AMKCode commited on
Commit
3c53382
·
verified ·
1 Parent(s): 14f7fa6

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-3.5-mini-instruct
3
+ language:
4
+ - multilingual
5
+ library_name: transformers
6
+ license: mit
7
+ license_link: https://huggingface.co/microsoft/Phi-3.5-mini-instruct/resolve/main/LICENSE
8
+ pipeline_tag: text-generation
9
+ tags:
10
+ - nlp
11
+ - code
12
+ - mlc-ai
13
+ - MLC-Weight-Conversion
14
+ widget:
15
+ - messages:
16
+ - role: user
17
+ content: Can you provide ways to eat combinations of bananas and dragonfruits?
18
+ ---
19
+ ---
20
+ library_name: mlc-llm
21
+ base_model: microsoft/Phi-3.5-mini-instruct
22
+ tags:
23
+ - mlc-llm
24
+ - web-llm
25
+ ---
26
+
27
+ # AMKCode/Phi-3.5-mini-instruct-q4f16_1-MLC
28
+
29
+ This is the [Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) model in MLC format `q4f16_1`.
30
+ The conversion was done using the [MLC-Weight-Conversion](https://huggingface.co/spaces/mlc-ai/MLC-Weight-Conversion) space.
31
+ The model can be used for projects [MLC-LLM](https://github.com/mlc-ai/mlc-llm) and [WebLLM](https://github.com/mlc-ai/web-llm).
32
+
33
+ ## Example Usage
34
+
35
+ Here are some examples of using this model in MLC LLM.
36
+ Before running the examples, please install MLC LLM by following the [installation documentation](https://llm.mlc.ai/docs/install/mlc_llm.html#install-mlc-packages).
37
+
38
+ ### Chat
39
+
40
+ In command line, run
41
+ ```bash
42
+ mlc_llm chat HF://mlc-ai/AMKCode/Phi-3.5-mini-instruct-q4f16_1-MLC
43
+ ```
44
+
45
+ ### REST Server
46
+
47
+ In command line, run
48
+ ```bash
49
+ mlc_llm serve HF://mlc-ai/AMKCode/Phi-3.5-mini-instruct-q4f16_1-MLC
50
+ ```
51
+
52
+ ### Python API
53
+
54
+ ```python
55
+ from mlc_llm import MLCEngine
56
+
57
+ # Create engine
58
+ model = "HF://mlc-ai/AMKCode/Phi-3.5-mini-instruct-q4f16_1-MLC"
59
+ engine = MLCEngine(model)
60
+
61
+ # Run chat completion in OpenAI API.
62
+ for response in engine.chat.completions.create(
63
+ messages=[{"role": "user", "content": "What is the meaning of life?"}],
64
+ model=model,
65
+ stream=True,
66
+ ):
67
+ for choice in response.choices:
68
+ print(choice.delta.content, end="", flush=True)
69
+ print("\n")
70
+
71
+ engine.terminate()
72
+ ```
73
+
74
+ ## Documentation
75
+
76
+ For more information on MLC LLM project, please visit our [documentation](https://llm.mlc.ai/docs/) and [GitHub repo](http://github.com/mlc-ai/mlc-llm).