File size: 2,091 Bytes
8edb101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79b808f
8edb101
 
 
 
 
 
 
79b808f
8edb101
 
 
 
 
 
 
79b808f
8edb101
79b808f
 
8edb101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79b808f
 
8edb101
 
 
 
79b808f
8edb101
 
 
 
 
79b808f
 
 
 
 
 
 
8edb101
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-oxford-brain-tumor
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.6923076923076923
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-oxford-brain-tumor

This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5719
- Accuracy: 0.6923

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 20
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 11   | 0.5904          | 0.64     |
| No log        | 2.0   | 22   | 0.5276          | 0.68     |
| No log        | 3.0   | 33   | 0.4864          | 0.8      |
| No log        | 4.0   | 44   | 0.4566          | 0.8      |
| No log        | 5.0   | 55   | 0.4390          | 0.88     |
| No log        | 6.0   | 66   | 0.4294          | 0.96     |
| No log        | 7.0   | 77   | 0.4259          | 0.96     |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1