--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-oxford-brain-tumor results: - task: name: Image Classification type: image-classification dataset: name: Mahadih534/brain-tumor-dataset type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.6153846153846154 --- # vit-base-oxford-brain-tumor This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the Mahadih534/brain-tumor-dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.6331 - Accuracy: 0.6154 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 13 | 0.6259 | 0.64 | | No log | 2.0 | 26 | 0.5560 | 0.8 | | No log | 3.0 | 39 | 0.5105 | 0.88 | | No log | 4.0 | 52 | 0.4766 | 0.88 | | No log | 5.0 | 65 | 0.4543 | 0.88 | | No log | 6.0 | 78 | 0.4433 | 0.88 | | No log | 7.0 | 91 | 0.4400 | 0.88 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1