File size: 1,621 Bytes
a6fe69f
 
 
 
 
 
306162c
0eb700e
b5526ea
b61de4e
0eb700e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5526ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0eb700e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
license: cc-by-nc-4.0
datasets:
- APauli/Persuasive-Pairs
language:
- en
pipeline_tag: sentence-similarity
---
# Model to score relative persuasive language between pairs
More info about training, evaluation, and use in paper is here: https://arxiv.org/abs/2406.17753

Python:
```python 
from transformers import AutoModelForSequenceClassification,AutoTokenizer
import torch
modelname='APauli/Persuasive_language_in_pairs'
model = AutoModelForSequenceClassification.from_pretrained(modelname)
tokenizer = AutoTokenizer.from_pretrained(modelname)

def predict(textA, textB, model,tokenizer):
    encoded_input = tokenizer(textA, textB, padding=True, truncation=True,max_length=256, return_tensors="pt")
    with torch.no_grad():
        logits = model(**encoded_input).logits
    score1=logits.detach().cpu().numpy()
    #flipped
    encoded_input = tokenizer(textB, textA, padding=True, truncation=True,max_length=256, return_tensors="pt")
    with torch.no_grad():
        logits = model(**encoded_input).logits
    score2=logits.detach().cpu().numpy()*(-1)
    score = (score1+score2)/2
    return score
```

## Citation

If you find our dataset helpful, kindly refer to us in your work using the following citation:
```
@misc{pauli2024measuringbenchmarkinglargelanguage,
      title={Measuring and Benchmarking Large Language Models' Capabilities to Generate Persuasive Language}, 
      author={Amalie Brogaard Pauli and Isabelle Augenstein and Ira Assent},
      year={2024},
      eprint={2406.17753},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2406.17753}, 
}
```