ARandomFrenchDev commited on
Commit
d49ba3d
·
1 Parent(s): 40ada48

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1446.60 +/- 144.82
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3ec34bf4d20e51c9d951c8a7c5fd6ccff0e291b185301f4dbd94a9a5a8bc2b6
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3d89322670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3d89322700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3d89322790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3d89322820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3d893228b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3d89322940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3d893229d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3d89322a60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3d89322af0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3d89322b80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3d89322c10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3d89322ca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f3d8931f540>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1675436921236629914,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIyZnb6Waxs/4ZKMPqagcb0lb6q+XOK3PzKV075SCSa/5HM2wFSLtj+2wGG/RmQQPZcbSb8AGr0/KQ40Py1oDr6cbmm/s7MJQELoND9zDBI/iEpSv8UZqz4V9y8/VRoJPkhZfr9o1hM/+w7LPk7JcT9etMo/a9bnv7iL2r4Y+Zg/FvQlwBF5KL/yuri/iWrTv1F3PT+plt+8YJTGPvWfdb5y1Xa/DhhaP/TUOD/BLoQ89mrfv06jsj+yRBE/VGKeP7JesT5UwRG/wSBLv50gZj9IWX6/aNYTP/sOyz5Mhoe/8WkPvy3aqD+e/MTAK3LAvgO5Cj+gqo29UhmEPxnAmL2q+UTAtD1uPJRmI79sC5Y/gp8RQGsojz5MiJI+lsiJP77bnz9jnQq/ZPp2Pxrj27uY3hNAA4oYvh3Qpb0cLvk+SFl+v2jWEz/7Dss+TslxP9TrdT/cg22+5vsEP6pOUj8yldE/w7YqvyZbmj6uWVK/sQEBP68zdb/4/W+/vE/DPjvJlz4Oua8/wD7UveKz37+SjoQ/xKX+P5eyHz/6/no/aYWfP9q1Ir/u1lQ/oUsIQEhZfr9o1hM/SF8hwEyGh7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADlUQ+2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkV5HPQAAAAC4LvG/AAAAAFTG+L0AAAAA1ez3PwAAAADxS489AAAAAMi26D8AAAAAMIyLuwAAAABwd+G/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8MtlMwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD3jl70AAAAAG2DsvwAAAAD7bfY9AAAAABbl/z8AAAAAM2bnvQAAAAAxr+w/AAAAAMJypD0AAAAA+1vivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIt8X7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA6IYU9AAAAAMji578AAAAAsT7dvQAAAACjbvA/AAAAAGx0prwAAAAASlP8PwAAAAAMEEC9AAAAAB1m4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD6lhO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5o8EPgAAAAAWFuu/AAAAAPRuDL4AAAAASBvzPwAAAADHcMQ9AAAAACF1+j8AAAAAtkWQvQAAAACJyNy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJgJlqubI92MAWyUTegDjAF0lEdAqbUWOsDGLnV9lChoBkdAj6VclPacqmgHTegDaAhHQKm5LyWAwwl1fZQoaAZHQJhW6bTc6/9oB03oA2gIR0CpvHyjYZl4dX2UKGgGR0CKa9tNSIgvaAdN6ANoCEdAqb51LnLaEnV9lChoBkdAmbjXA6+36WgHTegDaAhHQKnA3ZIQOFx1fZQoaAZHQJbJKlj3EhtoB03oA2gIR0CpxPYht+CsdX2UKGgGR0CULqek56t1aAdN6ANoCEdAqcgHJkoWpXV9lChoBkdAmcPC++M6zWgHTegDaAhHQKnKA4NI9Tx1fZQoaAZHQJyYUP7N0NloB03oA2gIR0CpzHdc0LtvdX2UKGgGR0Ce1Ty3Td+HaAdN6ANoCEdAqdB5T/ACXHV9lChoBkdAm8j0mUnogWgHTegDaAhHQKnTq9fTkQx1fZQoaAZHQJssXsjVx0doB03oA2gIR0Cp1Y8QyylfdX2UKGgGR0CdYoYa5wwTaAdN6ANoCEdAqdf6VQhwEXV9lChoBkdAnfpaqfe1r2gHTegDaAhHQKncMLR8c+91fZQoaAZHQJ0Ak4LkS29oB03oA2gIR0Cp31UtRNypdX2UKGgGR0CeXAxXnyNGaAdN6ANoCEdAqeFGpVCHAXV9lChoBkdAnaC36hxo7GgHTegDaAhHQKnjrVENOM51fZQoaAZHQJ/xCV6eGwloB03oA2gIR0Cp598L0BfbdX2UKGgGR0CgMxOR9w3paAdN6ANoCEdAqesAf4h2XHV9lChoBkdAoEIdAZ88cWgHTegDaAhHQKns6uHvc8F1fZQoaAZHQI+imGATZg5oB03oA2gIR0Cp72iSidrgdX2UKGgGR0CTMKXYUWVNaAdN6ANoCEdAqfOaPEKmbnV9lChoBkdAlVkBubZvk2gHTegDaAhHQKn20Et/WlN1fZQoaAZHQJW7TIuGsWBoB03oA2gIR0Cp+N7DVH4HdX2UKGgGR0CXtki0v4/NaAdN6ANoCEdAqftxsQ/X5HV9lChoBkdAgsUoqLCN0mgHTegDaAhHQKn/pPSDyvt1fZQoaAZHQJfr1QpF1CBoB03oA2gIR0CqAtUdilSCdX2UKGgGR0CYCnKh+OOsaAdN6ANoCEdAqgTQTwlSj3V9lChoBkdAiVOr0rbxmWgHTegDaAhHQKoHXrE9+w11fZQoaAZHQIOu5T0g8r9oB03oA2gIR0CqC7c/UvwmdX2UKGgGR0CF3/KwIMScaAdN6ANoCEdAqg7gs5GSZHV9lChoBkdAhqLLleWv82gHTegDaAhHQKoQx2rXDm91fZQoaAZHQKAy5ywwCbNoB03oA2gIR0CqE0k4FRpDdX2UKGgGR0Ccv99cKPXDaAdN6ANoCEdAqheeBSUC73V9lChoBkdAnBXFum78N2gHTegDaAhHQKoat6PbO/t1fZQoaAZHQJ+rkTbnHNpoB03oA2gIR0CqHKD6nBLxdX2UKGgGR0CaGkiEQGwBaAdN6ANoCEdAqh8J8x9G7XV9lChoBkdAmEAzVtoBaWgHTegDaAhHQKojMgvlEJB1fZQoaAZHQJvUPoyKvV5oB03oA2gIR0CqJmW912aEdX2UKGgGR0CYgDMbm2b5aAdN6ANoCEdAqihJm/WUbHV9lChoBkdAloG4CZF5OmgHTegDaAhHQKoqpNBWxQl1fZQoaAZHQJ3gw1aW5YpoB03oA2gIR0CqLret8uzydX2UKGgGR0CXmozHS4OMaAdN6ANoCEdAqjHJfpljE3V9lChoBkdAmySKQV9F4WgHTegDaAhHQKozu/zJ6pp1fZQoaAZHQJpamxnnMdNoB03oA2gIR0CqNhq8DjiodX2UKGgGR0CdYzAEdNnHaAdN6ANoCEdAqjo1Brvb5HV9lChoBkdAnukBgqmTDGgHTegDaAhHQKo9Szj3mFJ1fZQoaAZHQKCq9J4B3idoB03oA2gIR0CqPzHtOVPfdX2UKGgGR0Ce3L6sQumKaAdN6ANoCEdAqkGiNOuaF3V9lChoBkdAn4hr8zhxYWgHTegDaAhHQKpFqYl6Z6V1fZQoaAZHQJpk3fR/mT1oB03oA2gIR0CqSMoZhrnDdX2UKGgGR0CdqJTMqz7eaAdN6ANoCEdAqkrS79Q40nV9lChoBkdAl0summ+Cb2gHTegDaAhHQKpNWaYu01J1fZQoaAZHQIjK8yJsO5JoB03oA2gIR0CqUXd4mkWRdX2UKGgGR0CWvOgZ0jkdaAdN6ANoCEdAqlS+29cry3V9lChoBkdAlCyXJgb6xmgHTegDaAhHQKpWsWUr08N1fZQoaAZHQJjTLakAPupoB03oA2gIR0CqWVHDziCKdX2UKGgGR0CWzxw3YL9daAdN6ANoCEdAql2FqagElnV9lChoBkdAl+rzMmnfmGgHTegDaAhHQKpgsdcSoOx1fZQoaAZHQJHdEX0oSctoB03oA2gIR0CqYrxJVbRndX2UKGgGR0CVNgFCswL3aAdN6ANoCEdAqmUvMyJsPHV9lChoBkdAkKjJFb3XZ2gHTegDaAhHQKppcIHC4z91fZQoaAZHQJT9TYbsF+xoB03oA2gIR0CqbJ8uanaWdX2UKGgGR0CX7adGRV6vaAdN6ANoCEdAqm6UyN4qw3V9lChoBkdAkfXZyMkyDmgHTegDaAhHQKpxFaiblRx1fZQoaAZHQI1bDzGxUvRoB03oA2gIR0CqdWPllsgudX2UKGgGR0CZbn/qgRK6aAdN6ANoCEdAqniKhi9ZinV9lChoBkdAl6pLIcR15mgHTegDaAhHQKp6g6z3RHB1fZQoaAZHQJA3dVFQVKxoB03oA2gIR0CqfR0Fjd56dX2UKGgGR0CXuMUPQOWjaAdN6ANoCEdAqoFZ/PPcBXV9lChoBkdAmlU2ykbgj2gHTegDaAhHQKqEce/YapB1fZQoaAZHQJaS/8YQ8OloB03oA2gIR0CqhnEJSiuddX2UKGgGR0CWH5BtDUmVaAdN6ANoCEdAqokCk43m3nV9lChoBkdAmeIh4D9wWGgHTegDaAhHQKqNJspobn51fZQoaAZHQJdHgdhiLEVoB03oA2gIR0CqkHeCTUy6dX2UKGgGR0CVdOH/95yEaAdN6ANoCEdAqpJyLqD9O3V9lChoBkdAnI1e4oZydWgHTegDaAhHQKqU9fiPyTZ1fZQoaAZHQJS5HqFAVwhoB03oA2gIR0CqmQnied08dX2UKGgGR0CXFfyrxRVIaAdN6ANoCEdAqpw6/20zCXV9lChoBkdAnZ1bYbsF+2gHTegDaAhHQKqeSrFwT/R1fZQoaAZHQIs+3+6y0KJoB03oA2gIR0CqoLd/jKgadX2UKGgGR0CV+/4TK1XvaAdN6ANoCEdAqqTY1BMSK3V9lChoBkdAnE1fA0sOG2gHTegDaAhHQKqn5P0I1Lt1fZQoaAZHQJpNTpOerdZoB03oA2gIR0Cqqb9ilSCOdX2UKGgGR0CZnZ24uscRaAdN6ANoCEdAqqwcqpcX33V9lChoBkdAmmP2om5UcWgHTegDaAhHQKqwTddE9dN1fZQoaAZHQJmkgAvL5h1oB03oA2gIR0Cqs4eCbtqpdX2UKGgGR0CalqorFwT/aAdN6ANoCEdAqrV9o11nunV9lChoBkdAmT0pC8e0X2gHTegDaAhHQKq349lEqlR1fZQoaAZHQJLl/nNgSe1oB03oA2gIR0Cqu/Vp0wJxdX2UKGgGR0Cg0LPQfIS2aAdN6ANoCEdAqr8GhM8HOnV9lChoBkdAmzzJxNqQBGgHTegDaAhHQKrA8vhZQpF1fZQoaAZHQJm/iIxgy/NoB03oA2gIR0Cqw1oF3Y+TdX2UKGgGR0CZpSqcEvCeaAdN6ANoCEdAqseE/OdGzHV9lChoBkdAme9rsjVx0mgHTegDaAhHQKrKsr1/UfB1fZQoaAZHQJZ5aDcuandoB03oA2gIR0CqzKe+VTrFdX2UKGgGR0CRG/iUgSvlaAdN6ANoCEdAqs9DDwYtQXV9lChoBkdAlbWrGvOhTWgHTegDaAhHQKrTYpG4I8h1fZQoaAZHQJiK9b4agmJoB03oA2gIR0Cq1olTefqYdX2UKGgGR0CVMIk8RtgsaAdN6ANoCEdAqtmEuanaWXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b7263d94a04e99f1652e7e1d61de24adcd9c2038879cbbe8e98a654bc4ed414
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0405385b7bcc398d73f60180d3f907a134687772ee2cc9be42a3778f03882c17
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3d89322670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3d89322700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3d89322790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3d89322820>", "_build": "<function ActorCriticPolicy._build at 0x7f3d893228b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3d89322940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3d893229d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3d89322a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3d89322af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3d89322b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3d89322c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3d89322ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3d8931f540>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675436921236629914, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIyZnb6Waxs/4ZKMPqagcb0lb6q+XOK3PzKV075SCSa/5HM2wFSLtj+2wGG/RmQQPZcbSb8AGr0/KQ40Py1oDr6cbmm/s7MJQELoND9zDBI/iEpSv8UZqz4V9y8/VRoJPkhZfr9o1hM/+w7LPk7JcT9etMo/a9bnv7iL2r4Y+Zg/FvQlwBF5KL/yuri/iWrTv1F3PT+plt+8YJTGPvWfdb5y1Xa/DhhaP/TUOD/BLoQ89mrfv06jsj+yRBE/VGKeP7JesT5UwRG/wSBLv50gZj9IWX6/aNYTP/sOyz5Mhoe/8WkPvy3aqD+e/MTAK3LAvgO5Cj+gqo29UhmEPxnAmL2q+UTAtD1uPJRmI79sC5Y/gp8RQGsojz5MiJI+lsiJP77bnz9jnQq/ZPp2Pxrj27uY3hNAA4oYvh3Qpb0cLvk+SFl+v2jWEz/7Dss+TslxP9TrdT/cg22+5vsEP6pOUj8yldE/w7YqvyZbmj6uWVK/sQEBP68zdb/4/W+/vE/DPjvJlz4Oua8/wD7UveKz37+SjoQ/xKX+P5eyHz/6/no/aYWfP9q1Ir/u1lQ/oUsIQEhZfr9o1hM/SF8hwEyGh7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADlUQ+2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkV5HPQAAAAC4LvG/AAAAAFTG+L0AAAAA1ez3PwAAAADxS489AAAAAMi26D8AAAAAMIyLuwAAAABwd+G/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8MtlMwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD3jl70AAAAAG2DsvwAAAAD7bfY9AAAAABbl/z8AAAAAM2bnvQAAAAAxr+w/AAAAAMJypD0AAAAA+1vivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIt8X7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA6IYU9AAAAAMji578AAAAAsT7dvQAAAACjbvA/AAAAAGx0prwAAAAASlP8PwAAAAAMEEC9AAAAAB1m4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD6lhO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5o8EPgAAAAAWFuu/AAAAAPRuDL4AAAAASBvzPwAAAADHcMQ9AAAAACF1+j8AAAAAtkWQvQAAAACJyNy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJgJlqubI92MAWyUTegDjAF0lEdAqbUWOsDGLnV9lChoBkdAj6VclPacqmgHTegDaAhHQKm5LyWAwwl1fZQoaAZHQJhW6bTc6/9oB03oA2gIR0CpvHyjYZl4dX2UKGgGR0CKa9tNSIgvaAdN6ANoCEdAqb51LnLaEnV9lChoBkdAmbjXA6+36WgHTegDaAhHQKnA3ZIQOFx1fZQoaAZHQJbJKlj3EhtoB03oA2gIR0CpxPYht+CsdX2UKGgGR0CULqek56t1aAdN6ANoCEdAqcgHJkoWpXV9lChoBkdAmcPC++M6zWgHTegDaAhHQKnKA4NI9Tx1fZQoaAZHQJyYUP7N0NloB03oA2gIR0CpzHdc0LtvdX2UKGgGR0Ce1Ty3Td+HaAdN6ANoCEdAqdB5T/ACXHV9lChoBkdAm8j0mUnogWgHTegDaAhHQKnTq9fTkQx1fZQoaAZHQJssXsjVx0doB03oA2gIR0Cp1Y8QyylfdX2UKGgGR0CdYoYa5wwTaAdN6ANoCEdAqdf6VQhwEXV9lChoBkdAnfpaqfe1r2gHTegDaAhHQKncMLR8c+91fZQoaAZHQJ0Ak4LkS29oB03oA2gIR0Cp31UtRNypdX2UKGgGR0CeXAxXnyNGaAdN6ANoCEdAqeFGpVCHAXV9lChoBkdAnaC36hxo7GgHTegDaAhHQKnjrVENOM51fZQoaAZHQJ/xCV6eGwloB03oA2gIR0Cp598L0BfbdX2UKGgGR0CgMxOR9w3paAdN6ANoCEdAqesAf4h2XHV9lChoBkdAoEIdAZ88cWgHTegDaAhHQKns6uHvc8F1fZQoaAZHQI+imGATZg5oB03oA2gIR0Cp72iSidrgdX2UKGgGR0CTMKXYUWVNaAdN6ANoCEdAqfOaPEKmbnV9lChoBkdAlVkBubZvk2gHTegDaAhHQKn20Et/WlN1fZQoaAZHQJW7TIuGsWBoB03oA2gIR0Cp+N7DVH4HdX2UKGgGR0CXtki0v4/NaAdN6ANoCEdAqftxsQ/X5HV9lChoBkdAgsUoqLCN0mgHTegDaAhHQKn/pPSDyvt1fZQoaAZHQJfr1QpF1CBoB03oA2gIR0CqAtUdilSCdX2UKGgGR0CYCnKh+OOsaAdN6ANoCEdAqgTQTwlSj3V9lChoBkdAiVOr0rbxmWgHTegDaAhHQKoHXrE9+w11fZQoaAZHQIOu5T0g8r9oB03oA2gIR0CqC7c/UvwmdX2UKGgGR0CF3/KwIMScaAdN6ANoCEdAqg7gs5GSZHV9lChoBkdAhqLLleWv82gHTegDaAhHQKoQx2rXDm91fZQoaAZHQKAy5ywwCbNoB03oA2gIR0CqE0k4FRpDdX2UKGgGR0Ccv99cKPXDaAdN6ANoCEdAqheeBSUC73V9lChoBkdAnBXFum78N2gHTegDaAhHQKoat6PbO/t1fZQoaAZHQJ+rkTbnHNpoB03oA2gIR0CqHKD6nBLxdX2UKGgGR0CaGkiEQGwBaAdN6ANoCEdAqh8J8x9G7XV9lChoBkdAmEAzVtoBaWgHTegDaAhHQKojMgvlEJB1fZQoaAZHQJvUPoyKvV5oB03oA2gIR0CqJmW912aEdX2UKGgGR0CYgDMbm2b5aAdN6ANoCEdAqihJm/WUbHV9lChoBkdAloG4CZF5OmgHTegDaAhHQKoqpNBWxQl1fZQoaAZHQJ3gw1aW5YpoB03oA2gIR0CqLret8uzydX2UKGgGR0CXmozHS4OMaAdN6ANoCEdAqjHJfpljE3V9lChoBkdAmySKQV9F4WgHTegDaAhHQKozu/zJ6pp1fZQoaAZHQJpamxnnMdNoB03oA2gIR0CqNhq8DjiodX2UKGgGR0CdYzAEdNnHaAdN6ANoCEdAqjo1Brvb5HV9lChoBkdAnukBgqmTDGgHTegDaAhHQKo9Szj3mFJ1fZQoaAZHQKCq9J4B3idoB03oA2gIR0CqPzHtOVPfdX2UKGgGR0Ce3L6sQumKaAdN6ANoCEdAqkGiNOuaF3V9lChoBkdAn4hr8zhxYWgHTegDaAhHQKpFqYl6Z6V1fZQoaAZHQJpk3fR/mT1oB03oA2gIR0CqSMoZhrnDdX2UKGgGR0CdqJTMqz7eaAdN6ANoCEdAqkrS79Q40nV9lChoBkdAl0summ+Cb2gHTegDaAhHQKpNWaYu01J1fZQoaAZHQIjK8yJsO5JoB03oA2gIR0CqUXd4mkWRdX2UKGgGR0CWvOgZ0jkdaAdN6ANoCEdAqlS+29cry3V9lChoBkdAlCyXJgb6xmgHTegDaAhHQKpWsWUr08N1fZQoaAZHQJjTLakAPupoB03oA2gIR0CqWVHDziCKdX2UKGgGR0CWzxw3YL9daAdN6ANoCEdAql2FqagElnV9lChoBkdAl+rzMmnfmGgHTegDaAhHQKpgsdcSoOx1fZQoaAZHQJHdEX0oSctoB03oA2gIR0CqYrxJVbRndX2UKGgGR0CVNgFCswL3aAdN6ANoCEdAqmUvMyJsPHV9lChoBkdAkKjJFb3XZ2gHTegDaAhHQKppcIHC4z91fZQoaAZHQJT9TYbsF+xoB03oA2gIR0CqbJ8uanaWdX2UKGgGR0CX7adGRV6vaAdN6ANoCEdAqm6UyN4qw3V9lChoBkdAkfXZyMkyDmgHTegDaAhHQKpxFaiblRx1fZQoaAZHQI1bDzGxUvRoB03oA2gIR0CqdWPllsgudX2UKGgGR0CZbn/qgRK6aAdN6ANoCEdAqniKhi9ZinV9lChoBkdAl6pLIcR15mgHTegDaAhHQKp6g6z3RHB1fZQoaAZHQJA3dVFQVKxoB03oA2gIR0CqfR0Fjd56dX2UKGgGR0CXuMUPQOWjaAdN6ANoCEdAqoFZ/PPcBXV9lChoBkdAmlU2ykbgj2gHTegDaAhHQKqEce/YapB1fZQoaAZHQJaS/8YQ8OloB03oA2gIR0CqhnEJSiuddX2UKGgGR0CWH5BtDUmVaAdN6ANoCEdAqokCk43m3nV9lChoBkdAmeIh4D9wWGgHTegDaAhHQKqNJspobn51fZQoaAZHQJdHgdhiLEVoB03oA2gIR0CqkHeCTUy6dX2UKGgGR0CVdOH/95yEaAdN6ANoCEdAqpJyLqD9O3V9lChoBkdAnI1e4oZydWgHTegDaAhHQKqU9fiPyTZ1fZQoaAZHQJS5HqFAVwhoB03oA2gIR0CqmQnied08dX2UKGgGR0CXFfyrxRVIaAdN6ANoCEdAqpw6/20zCXV9lChoBkdAnZ1bYbsF+2gHTegDaAhHQKqeSrFwT/R1fZQoaAZHQIs+3+6y0KJoB03oA2gIR0CqoLd/jKgadX2UKGgGR0CV+/4TK1XvaAdN6ANoCEdAqqTY1BMSK3V9lChoBkdAnE1fA0sOG2gHTegDaAhHQKqn5P0I1Lt1fZQoaAZHQJpNTpOerdZoB03oA2gIR0Cqqb9ilSCOdX2UKGgGR0CZnZ24uscRaAdN6ANoCEdAqqwcqpcX33V9lChoBkdAmmP2om5UcWgHTegDaAhHQKqwTddE9dN1fZQoaAZHQJmkgAvL5h1oB03oA2gIR0Cqs4eCbtqpdX2UKGgGR0CalqorFwT/aAdN6ANoCEdAqrV9o11nunV9lChoBkdAmT0pC8e0X2gHTegDaAhHQKq349lEqlR1fZQoaAZHQJLl/nNgSe1oB03oA2gIR0Cqu/Vp0wJxdX2UKGgGR0Cg0LPQfIS2aAdN6ANoCEdAqr8GhM8HOnV9lChoBkdAmzzJxNqQBGgHTegDaAhHQKrA8vhZQpF1fZQoaAZHQJm/iIxgy/NoB03oA2gIR0Cqw1oF3Y+TdX2UKGgGR0CZpSqcEvCeaAdN6ANoCEdAqseE/OdGzHV9lChoBkdAme9rsjVx0mgHTegDaAhHQKrKsr1/UfB1fZQoaAZHQJZ5aDcuandoB03oA2gIR0CqzKe+VTrFdX2UKGgGR0CRG/iUgSvlaAdN6ANoCEdAqs9DDwYtQXV9lChoBkdAlbWrGvOhTWgHTegDaAhHQKrTYpG4I8h1fZQoaAZHQJiK9b4agmJoB03oA2gIR0Cq1olTefqYdX2UKGgGR0CVMIk8RtgsaAdN6ANoCEdAqtmEuanaWXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (860 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1446.5987604211084, "std_reward": 144.81630144940806, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-03T16:05:10.815868"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60e250908a1d46650b5c74199114271a473f9e97a9d8e1146af11b95762b6abc
3
+ size 2136