AXCXEPT commited on
Commit
ef99e69
1 Parent(s): 93ae26a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +112 -196
README.md CHANGED
@@ -1,199 +1,115 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ language:
4
+ - ja
5
+ - en
6
+ pipeline_tag: text-generation
7
+ base_model: AXCXEPT/EZO-Qwen2.5-72B-Instruct
8
+ tags:
9
+ - chat
10
+ - q4
11
  ---
12
 
13
+ # AXCXEPT/EZO-AutoCoTRAG-Qwen2.5-72B-Instruct_q4
14
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/657e900beaad53ff67ba84db/_9uZ9yI6dI7V3FqDED_C3.png)
15
+
16
+ ## Introduction
17
+ This model is based on “https://huggingface.co/AXCXEPT/EZO-Qwen2.5-72B-Instruct” and automatically performs “Chain-Of-Thought” and “RAG” as custom processing to compensate for knowledge that LLM itself does not have This is an LLM with additional custom processing.
18
+ Base model: “AXCXEPT/EZO-Qwen2.5-72B-Instruct” is based on Qwen/Qwen2.5-72B-Instruct with multiple tunings to improve overall performance from the Base model.
19
+
20
+ このモデルは、「 https://huggingface.co/AXCXEPT/EZO-Qwen2.5-72B-Instruct 」 をベースとして、カスタム処理として「Chain-Of-Thought」と「RAG」を自動で行い、LLM自身が持っていない知識を補うカスタムの処理を追加したLLMです。
21
+ ベースとなるモデル:「AXCXEPT/EZO-Qwen2.5-72B-Instruct」は、Qwen/Qwen2.5-72B-Instructをベースに複数のチューニングを施し、Baseモデルから総合的なパフォーマンスを向上させたモデルです。
22
+
23
+ ## [Auto CoT RAG]
24
+
25
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/657e900beaad53ff67ba84db/7gYUrkOxNlEGKwcKDkoAu.png)
26
+
27
+ Auto-CoT-RAG (Automatic Chain of Thought with Real-time Augmented Generation) technology is implemented. In addition to providing a multi-faceted mechanism for internalizing Internet search results, which are often incorporated into systems, it also realizes manual chain of thought processing for internal processing. This is an LLM x program style technique.
28
+ Auto-CoT (Chain of Thought): internally deepens thinking through multiple steps, allowing for more complex reasoning.
29
+ Real-time Knowledge Augmentation (RAG): allows users to go beyond the limits of trained data and perform web searches in real time to incorporate the latest information.
30
+
31
+ ### Auto-CoT-RAG(Automatic Chain of Thought with Real-time Augmented Generation)技術を実装しています。システムとして組み込むことの多い、インターネット検索結果を内包し多仕組みを提供するほか、内部処理に手思考の連鎖処理を実現しています。これはLLM×プログラムというスタイルの手法です。
32
+ #### 自動思考連鎖(Auto-CoT):内部的に複数のステップを踏んで思考を深化させ、より複雑な推論を可能にします。
33
+ #### リアルタイム知識拡張(RAG):学習済みデータの限界を超え、リアルタイムでウェブ検索を行い最新の情報を取り込むことができます。
34
+
35
+ ## [Usage]
36
+
37
+ Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
38
+
39
+ ```bash
40
+ pip install bitsandbytes transformers accelerate duckduckgo_search
41
+ ```
42
+
43
+ ```python
44
+ from transformers import AutoModelForCausalLM, AutoTokenizer
45
+ import torch
46
+
47
+ model_name = "AXCXEPT/EZO-AutoCoTRAG-Qwen2.5-72B-Instruct_q4"
48
+
49
+ model = AutoModelForCausalLM.from_pretrained(
50
+ model_name,
51
+ torch_dtype=torch.bfloat16,
52
+ device_map="auto",
53
+ trust_remote_code=True
54
+ )
55
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
56
+ model.set_tokenizer(tokenizer)
57
+
58
+ #================================================
59
+ # You can change max think count(default:=5):
60
+ model.set_max_iterations(2)
61
+ # You can change using RAG(default:=True)
62
+ model.set_use_search(True)
63
+ # You can change using RAG-top-k(default:=3)
64
+ model.set_top_k(3)
65
+ #================================================
66
+
67
+ prompt = "Who will be President of the United States in 2024?"
68
+ messages = [
69
+ {"role": "system", "content": "You are a helpful assistant."},
70
+ {"role": "user", "content": prompt}
71
+ ]
72
+ text = tokenizer.apply_chat_template(
73
+ messages,
74
+ tokenize=False,
75
+ add_generation_prompt=True
76
+ )
77
+ model_inputs = tokenizer([text], return_tensors="pt")
78
+
79
+ generated_ids = model.generate(
80
+ **model_inputs,
81
+ max_new_tokens=512
82
+ )
83
+
84
+ # decode
85
+ full_generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
86
+
87
+ # Find latest Assistant:
88
+ assistant_token = "Assistant:"
89
+ last_assistant_index = full_generated_text.rfind(assistant_token)
90
+
91
+ if last_assistant_index != -1:
92
+ # Select last word of 'Assistant:'
93
+ response = full_generated_text[last_assistant_index + len(assistant_token):].strip()
94
+ else:
95
+ # If 'Assistant:' is not found, use full text
96
+ response = full_generated_text.strip()
97
+
98
+ print(response)
99
+
100
+ ```
101
+
102
+ ### [Disclaimer]
103
+ このモデルは研究開発のみを目的として提��されるものであり、実験的なプロトタイプとみなされるべきモデルです。
104
+ 商業的な使用やミッションクリティカルな環境への配備を意図したものではありません。
105
+ 本モデルの使用は、使用者の責任において行われるものとし、その性能および結果は保証されません。
106
+ Axcxept株式会社は、直接的、間接的、特別、偶発的、結果的な損害、または本モデルの使用から生じるいかなる損失に対しても、得られた結果にかかわらず、一切の責任を負いません。
107
+ 利用者は、本モデルの使用に伴うリスクを十分に理解し、自己の判断で使用するものとします。
108
+
109
+ ### [謝辞/thanks]
110
+ We would like to express our gratitude and respect to Qwen and the team of developers who developed this base model, as well as to the many others who contributed to the automated evaluation methodology.
111
+ 本ベースモデルを開発してくださったQwen様ならびに当該チームの開発者の方々、また自動評価の手法を提供してくださった多数の方々に感謝と尊敬の意を表します。
112
+
113
+ ### Company:
114
+ Axcxept co., ltd.
115
+ [![Axcxept logo](https://cdn-uploads.huggingface.co/production/uploads/657e900beaad53ff67ba84db/8OKW86U986ywttvL2RcbG.png)](https://axcxept.com)