Aananda-giri commited on
Commit
9252393
1 Parent(s): eeaf923

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -1
README.md CHANGED
@@ -7,4 +7,77 @@ tags:
7
 
8
  This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
9
  - Library: https://huggingface.co/Aananda-giri/GPT2-Nepali/
10
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
  This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
9
  - Library: https://huggingface.co/Aananda-giri/GPT2-Nepali/
10
+ - Docs: [More Information Needed]
11
+
12
+ ---
13
+
14
+ # GPT-2-Nepali-512 Model
15
+ * 512 represents context length
16
+
17
+ * This repository contains a custom GPT-2 model trained on Nepali text. Follow the instructions below to use this model for text generation.
18
+
19
+ ---
20
+
21
+ ## How to Use the Model
22
+
23
+ 1. **Download the Required Code**
24
+ Save the [`model_code.py`](https://github.com/Aananda-giri/llm.np/blob/main/3.%20GPT-2/sebastian_gutenberg/huggingface_hub/model_code.py) file in the same directory where you'll run the script.
25
+
26
+ 2. **Install Required Libraries**
27
+ Ensure you have the necessary libraries installed:
28
+ ```bash
29
+ pip install transformers torch
30
+ ```
31
+
32
+ 3. **Run the Following Code**
33
+ Here's an example to load the model and generate text:
34
+
35
+ ```python
36
+ import torch
37
+ from model_code import GPTModel, generate_and_print_sample
38
+ from transformers import PreTrainedTokenizerFast
39
+
40
+ # Load the tokenizer
41
+ tokenizer = PreTrainedTokenizerFast.from_pretrained("Aananda-giri/NepaliBPE")
42
+
43
+ # Define the starting text
44
+ start_context = "रामले भात"
45
+
46
+ # Load the pre-trained model
47
+ loaded_model = GPTModel.from_pretrained("Aananda-giri/GPT2-Nepali")
48
+
49
+ # Move the model to the appropriate device (CPU or GPU)
50
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
51
+ loaded_model.to(device)
52
+
53
+ # Generate text
54
+ generate_and_print_sample(
55
+ loaded_model, tokenizer, device, start_context
56
+ )
57
+ ```
58
+
59
+ ---
60
+
61
+ ## Additional Notes
62
+
63
+ - **Tokenizer**: The model uses a pre-trained tokenizer available at `Aananda-giri/NepaliBPE`. Ensure this is downloaded and accessible during runtime.
64
+ - **Dependencies**: This code requires `transformers` (by Hugging Face) and `torch` (PyTorch). Install them if not already installed.
65
+ - **Device Compatibility**: The script automatically detects if a CUDA-enabled GPU is available and utilizes it for faster inference. If not, it defaults to the CPU.
66
+
67
+ ---
68
+
69
+ ## Example Output
70
+
71
+ Input:
72
+ ```
73
+ रामले भात
74
+ ```
75
+
76
+ Generated Text:
77
+ ```
78
+ रामले भात खाएर सन्तोष माने। ऊ आफ्ना साथीहरूसँग रमाइलो गरिरहेको थियो।
79
+ ```
80
+
81
+ ---
82
+
83
+ Let me know if you'd like further assistance!