import torch.onnx | |
#Function to Convert to ONNX | |
def Convert_ONNX(): | |
# set the model to inference mode | |
model.eval() | |
# Let's create a dummy input tensor | |
dummy_input = torch.randn(1, input_size, requires_grad=True) | |
# Export the model | |
torch.onnx.export(model, # model being run | |
dummy_input, # model input (or a tuple for multiple inputs) | |
"ImageClassifier.onnx", # where to save the model | |
export_params=True, # store the trained parameter weights inside the model file | |
opset_version=10, # the ONNX version to export the model to | |
do_constant_folding=True, # whether to execute constant folding for optimization | |
input_names = ['modelInput'], # the model's input names | |
output_names = ['modelOutput'], # the model's output names | |
dynamic_axes={'modelInput' : {0 : 'batch_size'}, # variable length axes | |
'modelOutput' : {0 : 'batch_size'}}) | |
print(" ") | |
print('Model has been converted to ONNX') |