Ananda Bollu
commited on
Commit
·
8cd6dcb
1
Parent(s):
c62696f
rename to pytorch_model.bin
Browse filesThe model Ab0/foo-model does not seem to have model files. Please check that it contains either `pytorch_model.bin` or `tf_model.h5`.
- model.pth → pytorch_model.bin +0 -0
- quickstart_tutorial.ipynb +731 -0
model.pth → pytorch_model.bin
RENAMED
File without changes
|
quickstart_tutorial.ipynb
ADDED
@@ -0,0 +1,731 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {
|
7 |
+
"collapsed": false
|
8 |
+
},
|
9 |
+
"outputs": [],
|
10 |
+
"source": [
|
11 |
+
"%matplotlib inline"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "markdown",
|
16 |
+
"metadata": {},
|
17 |
+
"source": [
|
18 |
+
"\n",
|
19 |
+
"`Learn the Basics <intro.html>`_ ||\n",
|
20 |
+
"**Quickstart** ||\n",
|
21 |
+
"`Tensors <tensorqs_tutorial.html>`_ ||\n",
|
22 |
+
"`Datasets & DataLoaders <data_tutorial.html>`_ ||\n",
|
23 |
+
"`Transforms <transforms_tutorial.html>`_ ||\n",
|
24 |
+
"`Build Model <buildmodel_tutorial.html>`_ ||\n",
|
25 |
+
"`Autograd <autogradqs_tutorial.html>`_ ||\n",
|
26 |
+
"`Optimization <optimization_tutorial.html>`_ ||\n",
|
27 |
+
"`Save & Load Model <saveloadrun_tutorial.html>`_\n",
|
28 |
+
"\n",
|
29 |
+
"Quickstart\n",
|
30 |
+
"===================\n",
|
31 |
+
"This section runs through the API for common tasks in machine learning. Refer to the links in each section to dive deeper.\n",
|
32 |
+
"\n",
|
33 |
+
"Working with data\n",
|
34 |
+
"-----------------\n",
|
35 |
+
"PyTorch has two `primitives to work with data <https://pytorch.org/docs/stable/data.html>`_:\n",
|
36 |
+
"``torch.utils.data.DataLoader`` and ``torch.utils.data.Dataset``.\n",
|
37 |
+
"``Dataset`` stores the samples and their corresponding labels, and ``DataLoader`` wraps an iterable around\n",
|
38 |
+
"the ``Dataset``.\n",
|
39 |
+
"\n",
|
40 |
+
"\n"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "code",
|
45 |
+
"execution_count": 2,
|
46 |
+
"metadata": {
|
47 |
+
"collapsed": false
|
48 |
+
},
|
49 |
+
"outputs": [],
|
50 |
+
"source": [
|
51 |
+
"import torch\n",
|
52 |
+
"from torch import nn\n",
|
53 |
+
"from torch.utils.data import DataLoader\n",
|
54 |
+
"from torchvision import datasets\n",
|
55 |
+
"from torchvision.transforms import ToTensor, Lambda, Compose\n",
|
56 |
+
"import matplotlib.pyplot as plt\n",
|
57 |
+
"from huggingface_hub import push_to_hub_keras"
|
58 |
+
]
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"cell_type": "markdown",
|
62 |
+
"metadata": {},
|
63 |
+
"source": [
|
64 |
+
"PyTorch offers domain-specific libraries such as `TorchText <https://pytorch.org/text/stable/index.html>`_,\n",
|
65 |
+
"`TorchVision <https://pytorch.org/vision/stable/index.html>`_, and `TorchAudio <https://pytorch.org/audio/stable/index.html>`_,\n",
|
66 |
+
"all of which include datasets. For this tutorial, we will be using a TorchVision dataset.\n",
|
67 |
+
"\n",
|
68 |
+
"The ``torchvision.datasets`` module contains ``Dataset`` objects for many real-world vision data like\n",
|
69 |
+
"CIFAR, COCO (`full list here <https://pytorch.org/vision/stable/datasets.html>`_). In this tutorial, we\n",
|
70 |
+
"use the FashionMNIST dataset. Every TorchVision ``Dataset`` includes two arguments: ``transform`` and\n",
|
71 |
+
"``target_transform`` to modify the samples and labels respectively.\n",
|
72 |
+
"\n"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"cell_type": "code",
|
77 |
+
"execution_count": 3,
|
78 |
+
"metadata": {
|
79 |
+
"collapsed": false
|
80 |
+
},
|
81 |
+
"outputs": [],
|
82 |
+
"source": [
|
83 |
+
"# Download training data from open datasets.\n",
|
84 |
+
"training_data = datasets.FashionMNIST(\n",
|
85 |
+
" root=\"data\",\n",
|
86 |
+
" train=True,\n",
|
87 |
+
" download=True,\n",
|
88 |
+
" transform=ToTensor(),\n",
|
89 |
+
")\n",
|
90 |
+
"\n",
|
91 |
+
"# Download test data from open datasets.\n",
|
92 |
+
"test_data = datasets.FashionMNIST(\n",
|
93 |
+
" root=\"data\",\n",
|
94 |
+
" train=False,\n",
|
95 |
+
" download=True,\n",
|
96 |
+
" transform=ToTensor(),\n",
|
97 |
+
")"
|
98 |
+
]
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"cell_type": "markdown",
|
102 |
+
"metadata": {},
|
103 |
+
"source": [
|
104 |
+
"We pass the ``Dataset`` as an argument to ``DataLoader``. This wraps an iterable over our dataset, and supports\n",
|
105 |
+
"automatic batching, sampling, shuffling and multiprocess data loading. Here we define a batch size of 64, i.e. each element\n",
|
106 |
+
"in the dataloader iterable will return a batch of 64 features and labels.\n",
|
107 |
+
"\n"
|
108 |
+
]
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"cell_type": "code",
|
112 |
+
"execution_count": 4,
|
113 |
+
"metadata": {
|
114 |
+
"collapsed": false
|
115 |
+
},
|
116 |
+
"outputs": [
|
117 |
+
{
|
118 |
+
"name": "stdout",
|
119 |
+
"output_type": "stream",
|
120 |
+
"text": [
|
121 |
+
"Shape of X [N, C, H, W]: torch.Size([64, 1, 28, 28])\n",
|
122 |
+
"Shape of y: torch.Size([64]) torch.int64\n"
|
123 |
+
]
|
124 |
+
}
|
125 |
+
],
|
126 |
+
"source": [
|
127 |
+
"batch_size = 64\n",
|
128 |
+
"\n",
|
129 |
+
"# Create data loaders.\n",
|
130 |
+
"train_dataloader = DataLoader(training_data, batch_size=batch_size)\n",
|
131 |
+
"test_dataloader = DataLoader(test_data, batch_size=batch_size)\n",
|
132 |
+
"\n",
|
133 |
+
"for X, y in test_dataloader:\n",
|
134 |
+
" print(\"Shape of X [N, C, H, W]: \", X.shape)\n",
|
135 |
+
" print(\"Shape of y: \", y.shape, y.dtype)\n",
|
136 |
+
" break"
|
137 |
+
]
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"cell_type": "markdown",
|
141 |
+
"metadata": {},
|
142 |
+
"source": [
|
143 |
+
"Read more about `loading data in PyTorch <data_tutorial.html>`_.\n",
|
144 |
+
"\n",
|
145 |
+
"\n"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "markdown",
|
150 |
+
"metadata": {},
|
151 |
+
"source": [
|
152 |
+
"--------------\n",
|
153 |
+
"\n",
|
154 |
+
"\n"
|
155 |
+
]
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"cell_type": "markdown",
|
159 |
+
"metadata": {},
|
160 |
+
"source": [
|
161 |
+
"Creating Models\n",
|
162 |
+
"------------------\n",
|
163 |
+
"To define a neural network in PyTorch, we create a class that inherits\n",
|
164 |
+
"from `nn.Module <https://pytorch.org/docs/stable/generated/torch.nn.Module.html>`_. We define the layers of the network\n",
|
165 |
+
"in the ``__init__`` function and specify how data will pass through the network in the ``forward`` function. To accelerate\n",
|
166 |
+
"operations in the neural network, we move it to the GPU if available.\n",
|
167 |
+
"\n"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"cell_type": "code",
|
172 |
+
"execution_count": 5,
|
173 |
+
"metadata": {
|
174 |
+
"collapsed": false
|
175 |
+
},
|
176 |
+
"outputs": [
|
177 |
+
{
|
178 |
+
"name": "stdout",
|
179 |
+
"output_type": "stream",
|
180 |
+
"text": [
|
181 |
+
"Using cpu device\n",
|
182 |
+
"NeuralNetwork(\n",
|
183 |
+
" (flatten): Flatten(start_dim=1, end_dim=-1)\n",
|
184 |
+
" (linear_relu_stack): Sequential(\n",
|
185 |
+
" (0): Linear(in_features=784, out_features=512, bias=True)\n",
|
186 |
+
" (1): ReLU()\n",
|
187 |
+
" (2): Linear(in_features=512, out_features=512, bias=True)\n",
|
188 |
+
" (3): ReLU()\n",
|
189 |
+
" (4): Linear(in_features=512, out_features=10, bias=True)\n",
|
190 |
+
" )\n",
|
191 |
+
")\n"
|
192 |
+
]
|
193 |
+
}
|
194 |
+
],
|
195 |
+
"source": [
|
196 |
+
"# Get cpu or gpu device for training.\n",
|
197 |
+
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
198 |
+
"print(f\"Using {device} device\")\n",
|
199 |
+
"\n",
|
200 |
+
"# Define model\n",
|
201 |
+
"class NeuralNetwork(nn.Module):\n",
|
202 |
+
" def __init__(self):\n",
|
203 |
+
" super(NeuralNetwork, self).__init__()\n",
|
204 |
+
" self.flatten = nn.Flatten()\n",
|
205 |
+
" self.linear_relu_stack = nn.Sequential(\n",
|
206 |
+
" nn.Linear(28*28, 512),\n",
|
207 |
+
" nn.ReLU(),\n",
|
208 |
+
" nn.Linear(512, 512),\n",
|
209 |
+
" nn.ReLU(),\n",
|
210 |
+
" nn.Linear(512, 10)\n",
|
211 |
+
" )\n",
|
212 |
+
"\n",
|
213 |
+
" def forward(self, x):\n",
|
214 |
+
" x = self.flatten(x)\n",
|
215 |
+
" logits = self.linear_relu_stack(x)\n",
|
216 |
+
" return logits\n",
|
217 |
+
"\n",
|
218 |
+
"model = NeuralNetwork().to(device)\n",
|
219 |
+
"print(model)"
|
220 |
+
]
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"cell_type": "markdown",
|
224 |
+
"metadata": {},
|
225 |
+
"source": [
|
226 |
+
"Read more about `building neural networks in PyTorch <buildmodel_tutorial.html>`_.\n",
|
227 |
+
"\n",
|
228 |
+
"\n"
|
229 |
+
]
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"cell_type": "markdown",
|
233 |
+
"metadata": {},
|
234 |
+
"source": [
|
235 |
+
"--------------\n",
|
236 |
+
"\n",
|
237 |
+
"\n"
|
238 |
+
]
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"cell_type": "markdown",
|
242 |
+
"metadata": {},
|
243 |
+
"source": [
|
244 |
+
"Optimizing the Model Parameters\n",
|
245 |
+
"----------------------------------------\n",
|
246 |
+
"To train a model, we need a `loss function <https://pytorch.org/docs/stable/nn.html#loss-functions>`_\n",
|
247 |
+
"and an `optimizer <https://pytorch.org/docs/stable/optim.html>`_.\n",
|
248 |
+
"\n"
|
249 |
+
]
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"cell_type": "code",
|
253 |
+
"execution_count": 6,
|
254 |
+
"metadata": {
|
255 |
+
"collapsed": false
|
256 |
+
},
|
257 |
+
"outputs": [],
|
258 |
+
"source": [
|
259 |
+
"loss_fn = nn.CrossEntropyLoss()\n",
|
260 |
+
"optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)"
|
261 |
+
]
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"cell_type": "markdown",
|
265 |
+
"metadata": {},
|
266 |
+
"source": [
|
267 |
+
"In a single training loop, the model makes predictions on the training dataset (fed to it in batches), and\n",
|
268 |
+
"backpropagates the prediction error to adjust the model's parameters.\n",
|
269 |
+
"\n"
|
270 |
+
]
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"cell_type": "code",
|
274 |
+
"execution_count": 7,
|
275 |
+
"metadata": {
|
276 |
+
"collapsed": false
|
277 |
+
},
|
278 |
+
"outputs": [],
|
279 |
+
"source": [
|
280 |
+
"def train(dataloader, model, loss_fn, optimizer):\n",
|
281 |
+
" size = len(dataloader.dataset)\n",
|
282 |
+
" model.train()\n",
|
283 |
+
" for batch, (X, y) in enumerate(dataloader):\n",
|
284 |
+
" X, y = X.to(device), y.to(device)\n",
|
285 |
+
"\n",
|
286 |
+
" # Compute prediction error\n",
|
287 |
+
" pred = model(X)\n",
|
288 |
+
" loss = loss_fn(pred, y)\n",
|
289 |
+
"\n",
|
290 |
+
" # Backpropagation\n",
|
291 |
+
" optimizer.zero_grad()\n",
|
292 |
+
" loss.backward()\n",
|
293 |
+
" optimizer.step()\n",
|
294 |
+
"\n",
|
295 |
+
" if batch % 100 == 0:\n",
|
296 |
+
" loss, current = loss.item(), batch * len(X)\n",
|
297 |
+
" print(f\"loss: {loss:>7f} [{current:>5d}/{size:>5d}]\")"
|
298 |
+
]
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"cell_type": "markdown",
|
302 |
+
"metadata": {},
|
303 |
+
"source": [
|
304 |
+
"We also check the model's performance against the test dataset to ensure it is learning.\n",
|
305 |
+
"\n"
|
306 |
+
]
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"cell_type": "code",
|
310 |
+
"execution_count": 8,
|
311 |
+
"metadata": {
|
312 |
+
"collapsed": false
|
313 |
+
},
|
314 |
+
"outputs": [],
|
315 |
+
"source": [
|
316 |
+
"def test(dataloader, model, loss_fn):\n",
|
317 |
+
" size = len(dataloader.dataset)\n",
|
318 |
+
" num_batches = len(dataloader)\n",
|
319 |
+
" model.eval()\n",
|
320 |
+
" test_loss, correct = 0, 0\n",
|
321 |
+
" with torch.no_grad():\n",
|
322 |
+
" for X, y in dataloader:\n",
|
323 |
+
" X, y = X.to(device), y.to(device)\n",
|
324 |
+
" pred = model(X)\n",
|
325 |
+
" test_loss += loss_fn(pred, y).item()\n",
|
326 |
+
" correct += (pred.argmax(1) == y).type(torch.float).sum().item()\n",
|
327 |
+
" test_loss /= num_batches\n",
|
328 |
+
" correct /= size\n",
|
329 |
+
" print(f\"Test Error: \\n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \\n\")"
|
330 |
+
]
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"cell_type": "markdown",
|
334 |
+
"metadata": {},
|
335 |
+
"source": [
|
336 |
+
"The training process is conducted over several iterations (*epochs*). During each epoch, the model learns\n",
|
337 |
+
"parameters to make better predictions. We print the model's accuracy and loss at each epoch; we'd like to see the\n",
|
338 |
+
"accuracy increase and the loss decrease with every epoch.\n",
|
339 |
+
"\n"
|
340 |
+
]
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"cell_type": "code",
|
344 |
+
"execution_count": 9,
|
345 |
+
"metadata": {
|
346 |
+
"collapsed": false
|
347 |
+
},
|
348 |
+
"outputs": [
|
349 |
+
{
|
350 |
+
"name": "stdout",
|
351 |
+
"output_type": "stream",
|
352 |
+
"text": [
|
353 |
+
"Epoch 1\n",
|
354 |
+
"-------------------------------\n",
|
355 |
+
"loss: 2.293067 [ 0/60000]\n",
|
356 |
+
"loss: 2.287422 [ 6400/60000]\n",
|
357 |
+
"loss: 2.265790 [12800/60000]\n",
|
358 |
+
"loss: 2.274793 [19200/60000]\n",
|
359 |
+
"loss: 2.257332 [25600/60000]\n",
|
360 |
+
"loss: 2.222204 [32000/60000]\n",
|
361 |
+
"loss: 2.240200 [38400/60000]\n",
|
362 |
+
"loss: 2.206084 [44800/60000]\n",
|
363 |
+
"loss: 2.190236 [51200/60000]\n",
|
364 |
+
"loss: 2.176934 [57600/60000]\n",
|
365 |
+
"Test Error: \n",
|
366 |
+
" Accuracy: 42.4%, Avg loss: 2.162450 \n",
|
367 |
+
"\n",
|
368 |
+
"Epoch 2\n",
|
369 |
+
"-------------------------------\n",
|
370 |
+
"loss: 2.161891 [ 0/60000]\n",
|
371 |
+
"loss: 2.160867 [ 6400/60000]\n",
|
372 |
+
"loss: 2.099223 [12800/60000]\n",
|
373 |
+
"loss: 2.127940 [19200/60000]\n",
|
374 |
+
"loss: 2.089684 [25600/60000]\n",
|
375 |
+
"loss: 2.018054 [32000/60000]\n",
|
376 |
+
"loss: 2.060461 [38400/60000]\n",
|
377 |
+
"loss: 1.981958 [44800/60000]\n",
|
378 |
+
"loss: 1.971331 [51200/60000]\n",
|
379 |
+
"loss: 1.930486 [57600/60000]\n",
|
380 |
+
"Test Error: \n",
|
381 |
+
" Accuracy: 58.1%, Avg loss: 1.909495 \n",
|
382 |
+
"\n",
|
383 |
+
"Epoch 3\n",
|
384 |
+
"-------------------------------\n",
|
385 |
+
"loss: 1.930542 [ 0/60000]\n",
|
386 |
+
"loss: 1.913976 [ 6400/60000]\n",
|
387 |
+
"loss: 1.788895 [12800/60000]\n",
|
388 |
+
"loss: 1.838503 [19200/60000]\n",
|
389 |
+
"loss: 1.757226 [25600/60000]\n",
|
390 |
+
"loss: 1.682464 [32000/60000]\n",
|
391 |
+
"loss: 1.722755 [38400/60000]\n",
|
392 |
+
"loss: 1.617113 [44800/60000]\n",
|
393 |
+
"loss: 1.632282 [51200/60000]\n",
|
394 |
+
"loss: 1.548769 [57600/60000]\n",
|
395 |
+
"Test Error: \n",
|
396 |
+
" Accuracy: 61.0%, Avg loss: 1.543196 \n",
|
397 |
+
"\n",
|
398 |
+
"Epoch 4\n",
|
399 |
+
"-------------------------------\n",
|
400 |
+
"loss: 1.601020 [ 0/60000]\n",
|
401 |
+
"loss: 1.574128 [ 6400/60000]\n",
|
402 |
+
"loss: 1.412696 [12800/60000]\n",
|
403 |
+
"loss: 1.496537 [19200/60000]\n",
|
404 |
+
"loss: 1.391789 [25600/60000]\n",
|
405 |
+
"loss: 1.360881 [32000/60000]\n",
|
406 |
+
"loss: 1.398112 [38400/60000]\n",
|
407 |
+
"loss: 1.316551 [44800/60000]\n",
|
408 |
+
"loss: 1.347136 [51200/60000]\n",
|
409 |
+
"loss: 1.253991 [57600/60000]\n",
|
410 |
+
"Test Error: \n",
|
411 |
+
" Accuracy: 62.8%, Avg loss: 1.267020 \n",
|
412 |
+
"\n",
|
413 |
+
"Epoch 5\n",
|
414 |
+
"-------------------------------\n",
|
415 |
+
"loss: 1.336873 [ 0/60000]\n",
|
416 |
+
"loss: 1.324502 [ 6400/60000]\n",
|
417 |
+
"loss: 1.153551 [12800/60000]\n",
|
418 |
+
"loss: 1.265215 [19200/60000]\n",
|
419 |
+
"loss: 1.149221 [25600/60000]\n",
|
420 |
+
"loss: 1.156962 [32000/60000]\n",
|
421 |
+
"loss: 1.194912 [38400/60000]\n",
|
422 |
+
"loss: 1.133846 [44800/60000]\n",
|
423 |
+
"loss: 1.164861 [51200/60000]\n",
|
424 |
+
"loss: 1.080542 [57600/60000]\n",
|
425 |
+
"Test Error: \n",
|
426 |
+
" Accuracy: 64.1%, Avg loss: 1.094896 \n",
|
427 |
+
"\n",
|
428 |
+
"Done!\n"
|
429 |
+
]
|
430 |
+
}
|
431 |
+
],
|
432 |
+
"source": [
|
433 |
+
"epochs = 5\n",
|
434 |
+
"for t in range(epochs):\n",
|
435 |
+
" print(f\"Epoch {t+1}\\n-------------------------------\")\n",
|
436 |
+
" train(train_dataloader, model, loss_fn, optimizer)\n",
|
437 |
+
" test(test_dataloader, model, loss_fn)\n",
|
438 |
+
"print(\"Done!\")"
|
439 |
+
]
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"cell_type": "markdown",
|
443 |
+
"metadata": {},
|
444 |
+
"source": [
|
445 |
+
"Read more about `Training your model <optimization_tutorial.html>`_.\n",
|
446 |
+
"\n",
|
447 |
+
"\n"
|
448 |
+
]
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"cell_type": "markdown",
|
452 |
+
"metadata": {},
|
453 |
+
"source": [
|
454 |
+
"--------------\n",
|
455 |
+
"\n",
|
456 |
+
"\n"
|
457 |
+
]
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"cell_type": "markdown",
|
461 |
+
"metadata": {},
|
462 |
+
"source": [
|
463 |
+
"Saving Models\n",
|
464 |
+
"-------------\n",
|
465 |
+
"A common way to save a model is to serialize the internal state dictionary (containing the model parameters).\n",
|
466 |
+
"\n"
|
467 |
+
]
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"cell_type": "code",
|
471 |
+
"execution_count": 10,
|
472 |
+
"metadata": {
|
473 |
+
"collapsed": false
|
474 |
+
},
|
475 |
+
"outputs": [
|
476 |
+
{
|
477 |
+
"name": "stdout",
|
478 |
+
"output_type": "stream",
|
479 |
+
"text": [
|
480 |
+
"Saved PyTorch Model State to model.pth\n"
|
481 |
+
]
|
482 |
+
}
|
483 |
+
],
|
484 |
+
"source": [
|
485 |
+
"torch.save(model.state_dict(), \"pytorch_model.bin\")\n",
|
486 |
+
"print(\"Saved PyTorch Model State to pytorch_model.bin\")"
|
487 |
+
]
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"cell_type": "markdown",
|
491 |
+
"metadata": {},
|
492 |
+
"source": [
|
493 |
+
"Loading Models\n",
|
494 |
+
"----------------------------\n",
|
495 |
+
"\n",
|
496 |
+
"The process for loading a model includes re-creating the model structure and loading\n",
|
497 |
+
"the state dictionary into it.\n",
|
498 |
+
"\n"
|
499 |
+
]
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"cell_type": "code",
|
503 |
+
"execution_count": 13,
|
504 |
+
"metadata": {
|
505 |
+
"collapsed": false
|
506 |
+
},
|
507 |
+
"outputs": [
|
508 |
+
{
|
509 |
+
"data": {
|
510 |
+
"text/plain": [
|
511 |
+
"<All keys matched successfully>"
|
512 |
+
]
|
513 |
+
},
|
514 |
+
"execution_count": 13,
|
515 |
+
"metadata": {},
|
516 |
+
"output_type": "execute_result"
|
517 |
+
}
|
518 |
+
],
|
519 |
+
"source": [
|
520 |
+
"model = NeuralNetwork()\n",
|
521 |
+
"model.load_state_dict(torch.load(\"model.pth\"))"
|
522 |
+
]
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"cell_type": "markdown",
|
526 |
+
"metadata": {},
|
527 |
+
"source": [
|
528 |
+
"This model can now be used to make predictions.\n",
|
529 |
+
"\n"
|
530 |
+
]
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"cell_type": "code",
|
534 |
+
"execution_count": 15,
|
535 |
+
"metadata": {
|
536 |
+
"collapsed": false
|
537 |
+
},
|
538 |
+
"outputs": [
|
539 |
+
{
|
540 |
+
"name": "stdout",
|
541 |
+
"output_type": "stream",
|
542 |
+
"text": [
|
543 |
+
"Predicted: \"Shirt\", Actual: \"Shirt\"\n"
|
544 |
+
]
|
545 |
+
}
|
546 |
+
],
|
547 |
+
"source": [
|
548 |
+
"classes = [\n",
|
549 |
+
" \"T-shirt/top\",\n",
|
550 |
+
" \"Trouser\",\n",
|
551 |
+
" \"Pullover\",\n",
|
552 |
+
" \"Dress\",\n",
|
553 |
+
" \"Coat\",\n",
|
554 |
+
" \"Sandal\",\n",
|
555 |
+
" \"Shirt\",\n",
|
556 |
+
" \"Sneaker\",\n",
|
557 |
+
" \"Bag\",\n",
|
558 |
+
" \"Ankle boot\",\n",
|
559 |
+
"]\n",
|
560 |
+
"\n",
|
561 |
+
"model.eval()\n",
|
562 |
+
"x, y = test_data[4][0], test_data[4][1]\n",
|
563 |
+
"with torch.no_grad():\n",
|
564 |
+
" pred = model(x)\n",
|
565 |
+
" predicted, actual = classes[pred[0].argmax(0)], classes[y]\n",
|
566 |
+
" print(f'Predicted: \"{predicted}\", Actual: \"{actual}\"')"
|
567 |
+
]
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"cell_type": "code",
|
571 |
+
"execution_count": 16,
|
572 |
+
"metadata": {},
|
573 |
+
"outputs": [
|
574 |
+
{
|
575 |
+
"data": {
|
576 |
+
"text/plain": [
|
577 |
+
"tensor([[[0.0000, 0.0000, 0.0000, 0.0078, 0.0000, 0.0039, 0.0039, 0.0000,\n",
|
578 |
+
" 0.0000, 0.0000, 0.0000, 0.2235, 0.2627, 0.2863, 0.2980, 0.2980,\n",
|
579 |
+
" 0.3255, 0.2431, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
|
580 |
+
" 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
581 |
+
" [0.0000, 0.0000, 0.0000, 0.0039, 0.0039, 0.0039, 0.0000, 0.0000,\n",
|
582 |
+
" 0.0510, 0.3098, 0.5020, 0.7882, 0.6353, 0.6314, 0.6784, 0.7529,\n",
|
583 |
+
" 0.6745, 0.7098, 0.7216, 0.4235, 0.1176, 0.0000, 0.0000, 0.0000,\n",
|
584 |
+
" 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
585 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0039, 0.0000, 0.0000, 0.4000,\n",
|
586 |
+
" 0.5451, 0.5569, 0.4039, 0.4510, 0.6353, 0.6039, 0.6471, 0.6000,\n",
|
587 |
+
" 0.5451, 0.5059, 0.5882, 0.5412, 0.6706, 0.6314, 0.1020, 0.0000,\n",
|
588 |
+
" 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
589 |
+
" [0.0000, 0.0000, 0.0000, 0.0039, 0.0000, 0.0000, 0.4157, 0.4863,\n",
|
590 |
+
" 0.4235, 0.4039, 0.4157, 0.3647, 0.3922, 0.7059, 0.6118, 0.5765,\n",
|
591 |
+
" 0.5412, 0.3333, 0.6157, 0.4471, 0.4863, 0.6039, 0.6157, 0.0000,\n",
|
592 |
+
" 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
593 |
+
" [0.0000, 0.0000, 0.0000, 0.0078, 0.0000, 0.1137, 0.5255, 0.3961,\n",
|
594 |
+
" 0.4431, 0.4235, 0.3804, 0.4549, 0.3176, 0.5725, 0.7176, 0.6431,\n",
|
595 |
+
" 0.4353, 0.5725, 0.5137, 0.4784, 0.5176, 0.5686, 0.6627, 0.3647,\n",
|
596 |
+
" 0.0000, 0.0039, 0.0000, 0.0000],\n",
|
597 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.2549, 0.5137, 0.4118,\n",
|
598 |
+
" 0.3961, 0.4235, 0.3922, 0.4078, 0.3804, 0.2902, 0.8078, 0.6824,\n",
|
599 |
+
" 0.4510, 0.5882, 0.4235, 0.4667, 0.5725, 0.5961, 0.6353, 0.5529,\n",
|
600 |
+
" 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
601 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.4235, 0.4824, 0.4392,\n",
|
602 |
+
" 0.4157, 0.3843, 0.3922, 0.3961, 0.4353, 0.2824, 0.5333, 0.5176,\n",
|
603 |
+
" 0.4392, 0.4510, 0.4275, 0.5569, 0.5882, 0.6275, 0.6353, 0.7647,\n",
|
604 |
+
" 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
605 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.5294, 0.4784, 0.4667,\n",
|
606 |
+
" 0.4392, 0.3255, 0.3647, 0.3804, 0.4157, 0.4510, 0.3569, 0.4275,\n",
|
607 |
+
" 0.3255, 0.4275, 0.4902, 0.6471, 0.5490, 0.7569, 0.6275, 0.6902,\n",
|
608 |
+
" 0.0235, 0.0000, 0.0000, 0.0000],\n",
|
609 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0902, 0.5294, 0.5176, 0.5843,\n",
|
610 |
+
" 0.4078, 0.3059, 0.3765, 0.3804, 0.4039, 0.4235, 0.4235, 0.4510,\n",
|
611 |
+
" 0.3294, 0.4471, 0.5843, 0.6196, 0.5765, 0.8196, 0.6275, 0.6980,\n",
|
612 |
+
" 0.2039, 0.0000, 0.0000, 0.0000],\n",
|
613 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.2235, 0.4863, 0.5137, 0.6275,\n",
|
614 |
+
" 0.4039, 0.3765, 0.3961, 0.4275, 0.4275, 0.4353, 0.4235, 0.4471,\n",
|
615 |
+
" 0.4157, 0.4431, 0.6118, 0.6392, 0.6118, 0.7686, 0.6549, 0.6824,\n",
|
616 |
+
" 0.3333, 0.0000, 0.0000, 0.0000],\n",
|
617 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.3373, 0.4549, 0.4941, 0.6275,\n",
|
618 |
+
" 0.5176, 0.4000, 0.3765, 0.4078, 0.4196, 0.3843, 0.3647, 0.4824,\n",
|
619 |
+
" 0.4549, 0.4392, 0.5843, 0.6275, 0.7098, 0.7294, 0.6353, 0.6353,\n",
|
620 |
+
" 0.4824, 0.0000, 0.0000, 0.0000],\n",
|
621 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.4392, 0.4471, 0.4392, 0.6549,\n",
|
622 |
+
" 0.5725, 0.3922, 0.3922, 0.3961, 0.4196, 0.3765, 0.3922, 0.4941,\n",
|
623 |
+
" 0.4039, 0.4706, 0.5529, 0.6196, 0.6549, 0.7333, 0.5765, 0.5804,\n",
|
624 |
+
" 0.6667, 0.0000, 0.0000, 0.0000],\n",
|
625 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.4863, 0.4627, 0.3961, 0.7725,\n",
|
626 |
+
" 0.3490, 0.3961, 0.3922, 0.3765, 0.4235, 0.4039, 0.4235, 0.4784,\n",
|
627 |
+
" 0.4196, 0.4980, 0.5451, 0.5882, 0.4667, 0.7686, 0.5686, 0.5569,\n",
|
628 |
+
" 0.7020, 0.0000, 0.0000, 0.0000],\n",
|
629 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.5137, 0.4510, 0.3804, 0.7765,\n",
|
630 |
+
" 0.1843, 0.4235, 0.3765, 0.3765, 0.4157, 0.4667, 0.4000, 0.4706,\n",
|
631 |
+
" 0.4039, 0.4824, 0.5490, 0.5882, 0.3176, 0.8078, 0.5725, 0.5294,\n",
|
632 |
+
" 0.7608, 0.0000, 0.0000, 0.0000],\n",
|
633 |
+
" [0.0000, 0.0000, 0.0000, 0.0157, 0.5333, 0.4627, 0.3843, 0.7569,\n",
|
634 |
+
" 0.0824, 0.4275, 0.3765, 0.4157, 0.4000, 0.5059, 0.3922, 0.4667,\n",
|
635 |
+
" 0.4000, 0.4627, 0.5529, 0.6000, 0.1765, 0.8471, 0.5804, 0.5451,\n",
|
636 |
+
" 0.8039, 0.0471, 0.0000, 0.0000],\n",
|
637 |
+
" [0.0000, 0.0000, 0.0000, 0.0941, 0.5373, 0.4588, 0.3961, 0.7333,\n",
|
638 |
+
" 0.0980, 0.4431, 0.3608, 0.4392, 0.3686, 0.4706, 0.4118, 0.4980,\n",
|
639 |
+
" 0.3804, 0.4510, 0.5569, 0.5882, 0.0745, 0.8353, 0.5804, 0.5137,\n",
|
640 |
+
" 0.8000, 0.1412, 0.0000, 0.0000],\n",
|
641 |
+
" [0.0000, 0.0000, 0.0000, 0.1569, 0.5529, 0.4275, 0.4588, 0.6196,\n",
|
642 |
+
" 0.0471, 0.4863, 0.3529, 0.4549, 0.3765, 0.4588, 0.4431, 0.5333,\n",
|
643 |
+
" 0.3686, 0.4353, 0.5765, 0.6392, 0.1216, 0.7490, 0.5725, 0.5255,\n",
|
644 |
+
" 0.8078, 0.2275, 0.0000, 0.0000],\n",
|
645 |
+
" [0.0000, 0.0000, 0.0000, 0.1529, 0.5059, 0.4000, 0.5765, 0.4667,\n",
|
646 |
+
" 0.0000, 0.4706, 0.3529, 0.4667, 0.3961, 0.4549, 0.4157, 0.4980,\n",
|
647 |
+
" 0.4000, 0.4471, 0.5725, 0.7059, 0.0784, 0.5725, 0.6235, 0.5059,\n",
|
648 |
+
" 0.8000, 0.2745, 0.0000, 0.0000],\n",
|
649 |
+
" [0.0000, 0.0000, 0.0000, 0.2275, 0.4941, 0.4353, 0.6353, 0.3961,\n",
|
650 |
+
" 0.0824, 0.5176, 0.3490, 0.4824, 0.4235, 0.4157, 0.4000, 0.4941,\n",
|
651 |
+
" 0.4353, 0.4549, 0.5529, 0.6980, 0.1961, 0.4392, 0.6627, 0.5412,\n",
|
652 |
+
" 0.6431, 0.3294, 0.0000, 0.0000],\n",
|
653 |
+
" [0.0000, 0.0000, 0.0000, 0.4235, 0.5255, 0.5255, 0.7255, 0.3294,\n",
|
654 |
+
" 0.2863, 0.4824, 0.3412, 0.4784, 0.4353, 0.4000, 0.4157, 0.5020,\n",
|
655 |
+
" 0.4471, 0.4275, 0.5255, 0.6824, 0.3804, 0.3843, 0.6275, 0.5765,\n",
|
656 |
+
" 0.6863, 0.5294, 0.0000, 0.0000],\n",
|
657 |
+
" [0.0000, 0.0000, 0.0000, 0.3804, 0.5569, 0.6627, 0.7765, 0.1451,\n",
|
658 |
+
" 0.3294, 0.4196, 0.3804, 0.4784, 0.4392, 0.4275, 0.4392, 0.4941,\n",
|
659 |
+
" 0.4000, 0.3765, 0.5137, 0.6745, 0.5020, 0.2000, 0.9961, 0.6588,\n",
|
660 |
+
" 0.6431, 0.4353, 0.0000, 0.0000],\n",
|
661 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0471, 0.1804, 0.0078,\n",
|
662 |
+
" 0.4667, 0.4000, 0.4275, 0.4824, 0.3765, 0.4549, 0.4784, 0.5176,\n",
|
663 |
+
" 0.4157, 0.4157, 0.5059, 0.5922, 0.7216, 0.1020, 0.0784, 0.0314,\n",
|
664 |
+
" 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
665 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0510,\n",
|
666 |
+
" 0.5373, 0.3961, 0.4471, 0.3922, 0.4157, 0.5255, 0.5294, 0.5059,\n",
|
667 |
+
" 0.4078, 0.4353, 0.4824, 0.5922, 0.7608, 0.2902, 0.0000, 0.0000,\n",
|
668 |
+
" 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
669 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0039, 0.0118, 0.0000, 0.2863,\n",
|
670 |
+
" 0.5176, 0.3961, 0.4078, 0.4000, 0.5490, 0.4235, 0.4235, 0.5137,\n",
|
671 |
+
" 0.4157, 0.4667, 0.4431, 0.5569, 0.6549, 0.5294, 0.0000, 0.0039,\n",
|
672 |
+
" 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
673 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.4392,\n",
|
674 |
+
" 0.4627, 0.4196, 0.4078, 0.5451, 0.4275, 0.3804, 0.4824, 0.5412,\n",
|
675 |
+
" 0.4196, 0.4980, 0.4706, 0.5333, 0.6314, 0.6235, 0.0000, 0.0000,\n",
|
676 |
+
" 0.0039, 0.0000, 0.0000, 0.0000],\n",
|
677 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0118, 0.0000, 0.5569,\n",
|
678 |
+
" 0.5804, 0.4392, 0.4118, 0.3961, 0.3255, 0.4902, 0.4824, 0.5608,\n",
|
679 |
+
" 0.4078, 0.4510, 0.3922, 0.4941, 0.6588, 0.6980, 0.0275, 0.0000,\n",
|
680 |
+
" 0.0078, 0.0000, 0.0000, 0.0000],\n",
|
681 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0078, 0.0000, 0.0353,\n",
|
682 |
+
" 0.4941, 0.7216, 0.7843, 0.6549, 0.6392, 0.6706, 0.5882, 0.6549,\n",
|
683 |
+
" 0.6118, 0.6824, 0.7725, 0.7137, 0.6353, 0.2392, 0.0000, 0.0000,\n",
|
684 |
+
" 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
685 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
|
686 |
+
" 0.0000, 0.0000, 0.1176, 0.2824, 0.3725, 0.4275, 0.4353, 0.4353,\n",
|
687 |
+
" 0.4157, 0.3961, 0.2784, 0.0471, 0.0000, 0.0000, 0.0000, 0.0000,\n",
|
688 |
+
" 0.0000, 0.0000, 0.0000, 0.0000]]])"
|
689 |
+
]
|
690 |
+
},
|
691 |
+
"execution_count": 16,
|
692 |
+
"metadata": {},
|
693 |
+
"output_type": "execute_result"
|
694 |
+
}
|
695 |
+
],
|
696 |
+
"source": [
|
697 |
+
"test_data[4][0]"
|
698 |
+
]
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"cell_type": "markdown",
|
702 |
+
"metadata": {},
|
703 |
+
"source": [
|
704 |
+
"Read more about `Saving & Loading your model <saveloadrun_tutorial.html>`_.\n",
|
705 |
+
"\n",
|
706 |
+
"\n"
|
707 |
+
]
|
708 |
+
}
|
709 |
+
],
|
710 |
+
"metadata": {
|
711 |
+
"kernelspec": {
|
712 |
+
"display_name": "Python 3",
|
713 |
+
"language": "python",
|
714 |
+
"name": "python3"
|
715 |
+
},
|
716 |
+
"language_info": {
|
717 |
+
"codemirror_mode": {
|
718 |
+
"name": "ipython",
|
719 |
+
"version": 3
|
720 |
+
},
|
721 |
+
"file_extension": ".py",
|
722 |
+
"mimetype": "text/x-python",
|
723 |
+
"name": "python",
|
724 |
+
"nbconvert_exporter": "python",
|
725 |
+
"pygments_lexer": "ipython3",
|
726 |
+
"version": "3.8.1"
|
727 |
+
}
|
728 |
+
},
|
729 |
+
"nbformat": 4,
|
730 |
+
"nbformat_minor": 0
|
731 |
+
}
|