--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: lettuce-npk-vit results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8095238095238095 --- [Visualize in Weights & Biases](https://wandb.ai/abdoulaye-diop/lettuce-npk-deficiency-prediction/runs/at88jlqw) [Visualize in Weights & Biases](https://wandb.ai/abdoulaye-diop/lettuce-npk-deficiency-prediction/runs/at88jlqw) # lettuce-npk-vit This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7449 - Accuracy: 0.8095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.7273 | 2 | 1.3774 | 0.2143 | | No log | 1.8182 | 5 | 1.2738 | 0.4524 | | No log | 2.9091 | 8 | 1.1874 | 0.6190 | | 1.2511 | 4.0 | 11 | 1.1162 | 0.7619 | | 1.2511 | 4.7273 | 13 | 1.0780 | 0.7143 | | 1.2511 | 5.8182 | 16 | 1.0037 | 0.7857 | | 1.2511 | 6.9091 | 19 | 0.9342 | 0.8095 | | 0.9308 | 8.0 | 22 | 0.8653 | 0.8095 | | 0.9308 | 8.7273 | 24 | 0.8485 | 0.8095 | | 0.9308 | 9.8182 | 27 | 0.8264 | 0.8333 | | 0.7204 | 10.9091 | 30 | 0.8243 | 0.7857 | | 0.7204 | 12.0 | 33 | 0.7299 | 0.8571 | | 0.7204 | 12.7273 | 35 | 0.7376 | 0.8095 | | 0.7204 | 13.8182 | 38 | 0.7358 | 0.8333 | | 0.6101 | 14.5455 | 40 | 0.7449 | 0.8095 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1