File size: 7,338 Bytes
7e50900 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
#pragma once
#include <ATen/functorch/Macros.h>
#include <ATen/core/dispatch/Dispatcher.h>
#include <c10/core/impl/LocalDispatchKeySet.h>
#include <c10/util/Optional.h>
#include <c10/util/variant.h>
#include <bitset>
namespace at { namespace functorch {
// NOTE: [functorch interpreter stack]
//
// functorch's dispatching system uses a stack of interpreters.
// Historically we've referred to this as the "DynamicLayerStack".
//
// An interpreter is something that reads in the code it is passed
// and then executes it. We have a different interpreter per-transform:
// the "VmapInterpreter" is responsible for reading in operators (like aten::mv)
// and executing the batched version of it (the batching rule for aten::mv).
//
// Concretely, each interpreter is responsible for two things:
//
// 1) process(ophandle, stack)
// Given an operator handle and a stack of arguments, the interpreter is
// responsible for figuring out how to execute the operation under the semantics
// of the interpreter. For e.g. VmapInterpreter, this is figuring out how to call
// the batching rule.
//
// The batching rules are stored as kernels on the FuncTorchBatched key, so the way
// VmapInterpreter calls the batching rule is roughly: (A) exclude all
// dispatch keys aside from the Batched key, (B) redispatch so we get to the
// Batched key.
//
// 2) sendToNextInterpreter(ophandle, stack)
// The VmapInterpreter, when it sees aten::mv, will process it into a call to
// aten::mm. It then needs to send the call to aten::mm to the next interpreter
// in the interpreter stack.
//
// The VmapInterpreter just does this via a call to ophandle.callBoxed(stack)
// and most Interpreters will implement it this way.
enum RandomnessType {
Error, // always errors when calling a random function
Same, // randomness appears the same across batches
Different, // randomness appears different across batches
END
};
enum class TransformType {
Torch, // Unused
Vmap,
Grad, // reverse-mode AD, aka vjp
Jvp, // forward-mode AD
Functionalize,
};
std::ostream& operator<<(std::ostream& os, const TransformType& t);
// NOTE: [Interpreter "subclassing" design]
//
// How are various Interpreters for different transforms (vmap, grad, ...)
// implemented?
//
// Accessing interpreters is in the hot-path of functorch so we have a constraint
// that this code must be as fast as possible.
//
// As a result, we stay away from virtual methods and this causes our code
// to look a little funny.
//
// `Interpreter` is the struct for Interpreters. It holds ALL of the
// relevant information (what type of interpreter it is and the metadata).
// Metadata for each interpreter is represented as a Union (c10::variant)
// of all possible metadata (VmapInterpreterMeta, GradInterpreterMeta, ...).
//
// Given an Interpreter, how do I get a "VmapInterpreter"? You may wish to do this
// if you want to access the metadata fields (like batchSize and randomness).
//
// Each type of interpreter (e.g. Vmap) has a convenience struct
// (e.g. VmapInterpreterPtr) associated with it.
//
// Construct the convenience struct with VmapInterpreterPtr(Interpreter*),
// and then one can access methods on VmapInterpreterPtr like so:
// >>> VmapInterpreterPtr(&interpreter).batchSize()
//
// Finally, Interpreter::process switches on the type of the interpreter
// and calls one of {Transform}Intepreter::processImpl under the hood.
// Same for Interpreter::sendToNextInterpreter :)
struct VmapInterpreterMeta {
explicit VmapInterpreterMeta(int64_t batchSize, RandomnessType randomness) :
batchSize_(batchSize), randomness_(randomness) {}
int64_t batchSize_;
RandomnessType randomness_;
};
struct GradInterpreterMeta {
explicit GradInterpreterMeta(bool prevGradMode): prevGradMode_(prevGradMode) {}
bool prevGradMode_;
};
struct JvpInterpreterMeta {
explicit JvpInterpreterMeta(bool prevFwdGradMode) : prevFwdGradMode_(prevFwdGradMode) {}
bool prevFwdGradMode_;
};
struct FunctionalizeInterpreterMeta {
explicit FunctionalizeInterpreterMeta(bool functionalizeAddBackViews) :
functionalizeAddBackViews_(functionalizeAddBackViews) {}
bool functionalizeAddBackViews_;
};
typedef c10::variant<
int64_t,
GradInterpreterMeta,
JvpInterpreterMeta,
VmapInterpreterMeta,
FunctionalizeInterpreterMeta
> InterpreterMeta;
struct Interpreter {
// factory functions
static Interpreter Vmap(int64_t level, int64_t batchSize, RandomnessType randomness) {
return Interpreter(TransformType::Vmap, level, VmapInterpreterMeta(batchSize, randomness));
}
static Interpreter Grad(int64_t level, bool prevGradMode) {
return Interpreter(TransformType::Grad, level, GradInterpreterMeta(prevGradMode));
}
static Interpreter Jvp(int64_t level, bool prevFwdGradMode) {
return Interpreter(TransformType::Jvp, level, JvpInterpreterMeta(prevFwdGradMode));
}
static Interpreter Functionalize(int64_t level, bool functionalizeAddBackViews) {
return Interpreter(TransformType::Functionalize, level, FunctionalizeInterpreterMeta(functionalizeAddBackViews));
}
// methods
TransformType key() const { return type_; }
int64_t level() const { return level_; }
const InterpreterMeta& meta() const { return meta_; }
void process(const c10::OperatorHandle& op, torch::jit::Stack* stack);
void sendToNextInterpreter(const c10::OperatorHandle& op, torch::jit::Stack* stack, bool grad_special_case);
void saveLocalDispatchKeySet(c10::impl::LocalDispatchKeySet keyset) {
TORCH_INTERNAL_ASSERT(!savedLocalDispatchKeySet_.has_value());
savedLocalDispatchKeySet_ = std::move(keyset);
}
void clearSavedLocalDispatchKeySet() {
TORCH_INTERNAL_ASSERT(savedLocalDispatchKeySet_.has_value());
savedLocalDispatchKeySet_ = c10::nullopt;
}
c10::impl::LocalDispatchKeySet getSavedLocalDispatchKeySet() const {
TORCH_INTERNAL_ASSERT(savedLocalDispatchKeySet_.has_value());
return *savedLocalDispatchKeySet_;
}
// Please don't use this
explicit Interpreter() = default;
private:
explicit Interpreter(TransformType type, int64_t level, InterpreterMeta meta):
type_(type), level_(level), meta_(meta) {}
// fields
TransformType type_;
int64_t level_;
optional<c10::impl::LocalDispatchKeySet> savedLocalDispatchKeySet_;
InterpreterMeta meta_;
};
// Applies the following for-loop:
// for i in range(begin, end):
// args[i] = func(args[i])
void foreachTensorInplace(std::vector<IValue>& args, int64_t begin, int64_t end,
std::function<Tensor(const Tensor&)> func);
// Applies the following for-loop:
// for i in range(begin, end):
// if use_flag_relative[i] == 1: <-- treats use_flag_relative as a bitset
// args[i] = func(args[i], i - begin, true)
// args[i] = func(args[i], i - begin)
void foreachTensorInplaceWithFlag(std::vector<IValue>& args, int64_t begin, int64_t end,
const std::bitset<64> use_flag_relative, std::function<Tensor(const Tensor&, bool)> func);
std::vector<int64_t> findUnwrappedInputs(std::vector<IValue>& args, int64_t begin, int64_t end);
DispatchKeySet keysToExcludeWhenEnteringDynamicLayer(TransformType key);
void setup_dispatch_key_tls(DispatchKeySet exclude, DispatchKeySet include);
void sanityCheckStack(const c10::OperatorHandle& op, torch::jit::Stack* stack);
}} // namespace at::functorch
|