File size: 6,452 Bytes
7e50900 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
#pragma once
#include <algorithm>
#include <vector>
#include <ATen/div_rtn.h>
#include <ATen/core/Tensor.h>
#include <c10/util/irange.h>
#define TORCH_CHECK_DIM_SIZE(T, DIM, DIM_SIZE, SIZE) \
TORCH_CHECK( \
T.dim() == DIM && T.size(DIM_SIZE) == SIZE, \
"Need " #T " of dimension ", \
DIM, \
" and " #T ".size[", \
DIM_SIZE, \
"] == ", \
SIZE, \
" but got input to be of shape ", \
T.sizes())
namespace at {
namespace native {
namespace internal {
namespace {
inline bool all_positive(IntArrayRef& arr) {
return std::all_of(
arr.begin(), arr.end(), [](int64_t item) { return item > 0; });
}
inline bool all_nonnegative(std::vector<int64_t>& arr) {
return std::all_of(
arr.begin(), arr.end(), [](int64_t item) { return item >= 0; });
}
} // namespace
// calculate the rear part of output tensor sizes
template <int64_t dim>
std::vector<int64_t> get_output_size(
const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride_size,
IntArrayRef pad_size,
IntArrayRef dilation_size) {
std::vector<int64_t> sizes;
for (const auto index : c10::irange(dim)) {
sizes.push_back(
div_rtn<int64_t>(
input.size(index + input.dim() - dim) + 2 * pad_size[index] -
(dilation_size[index] * (kernel_size[index] - 1) + 1),
stride_size[index]) +
1);
}
return sizes;
}
// calculate the sizes of output tensor
template <int64_t dim>
std::vector<int64_t> get_output_size(
const Tensor& input,
const Tensor& weight,
IntArrayRef kernel_size,
IntArrayRef stride_size,
IntArrayRef pad_size,
IntArrayRef dilation_size) {
auto output_size = get_output_size<dim>(
input, kernel_size, stride_size, pad_size, dilation_size);
output_size.insert(output_size.begin(), weight.size(0));
if (input.dim() == dim + 2) {
output_size.insert(output_size.begin(), input.size(0));
}
return output_size;
}
/*
slow_conv_dilated_shape_check - check user-input to dilated convolution
forward and backward functions.
*/
template <int64_t dim>
void slow_conv_dilated_shape_check(
const Tensor& input,
const Tensor& weight,
const Tensor& bias,
const Tensor& grad_output,
IntArrayRef kernel_size,
IntArrayRef stride_size,
IntArrayRef pad_size,
IntArrayRef dilation_size) {
/*
When the following tensors are defined:
bias, grad_weight, grad_output
then these are assumed to be contiguous without checking
because of these tensors are made contiguous by calling
.contiguous() method or by resizing of zero-sized tensors in
forward/backward functions.
When grad_weight is defined then it is assumed without
checking to have the same shape as weight, see backward
functions.
*/
// Check size arguments
TORCH_CHECK(
kernel_size.size() == dim,
"kernel sizes length should be ",
dim,
", but got ",
kernel_size.size());
TORCH_CHECK(
stride_size.size() == dim,
"strides length should be ",
dim,
", but got ",
stride_size.size());
TORCH_CHECK(
dilation_size.size() == dim,
"dilations length should be ",
dim,
", but got ",
dilation_size.size());
TORCH_CHECK(
pad_size.size() == dim,
"pads length should be ",
dim,
", but got ",
pad_size.size());
TORCH_CHECK(
all_positive(kernel_size),
"kernel size should be greater than zero, but got ",
kernel_size);
TORCH_CHECK(
all_positive(stride_size),
"stride should be greater than zero, but got ",
stride_size);
TORCH_CHECK(
all_positive(dilation_size),
"dilation should be greater than zero, but got ",
dilation_size);
// check input
TORCH_CHECK(input.defined(), "input must be defined");
bool is_batch = input.dim() == dim + 2;
int64_t n = (is_batch ? 2 : 1);
int64_t ndim = n + dim;
if (!is_batch) {
// input dim has to be dim + 1 if not batched
TORCH_CHECK(
input.dim() == dim + 1,
"input must be 4D or 5D tensor but got ",
input.dim(),
"D tensor");
}
// check output sizes
auto output_size = get_output_size<dim>(
input, kernel_size, stride_size, pad_size, dilation_size);
TORCH_CHECK(
all_nonnegative(output_size),
"calculated output size ",
output_size,
" is too small (all sizes must be non-negative)");
// check weight
TORCH_CHECK(weight.defined(), "weight must be defined");
TORCH_CHECK(
weight.dim() == dim + 2,
"weight must be ",
dim + 2,
"D tensor but got ",
weight.dim(),
"D tensor dim=",
dim);
TORCH_CHECK(
weight.sizes().slice(2) == kernel_size,
"weight[2:] shape ",
weight.sizes().slice(2),
" must be equal to kernel_size ",
kernel_size);
TORCH_CHECK_DIM_SIZE(input, input.dim(), (is_batch ? 1 : 0), weight.size(1));
// check bias when present
if (bias.defined()) {
TORCH_CHECK(
bias.dim() == 1,
"bias must be 1D tensor but got ",
bias.dim(),
"D tensor");
TORCH_CHECK_DIM_SIZE(bias, 1, 0, weight.size(0));
}
// check grad_output when present
if (grad_output.defined()) {
TORCH_CHECK(
grad_output.dim() == ndim,
"grad_output must be ",
ndim,
"D tensor but got ",
grad_output.dim(),
"D tensor");
if (is_batch) {
TORCH_CHECK(
grad_output.size(0) == input.size(0),
"grad_output.size(0)=",
grad_output.size(0),
" must be input.size(0)=",
input.size(0));
}
TORCH_CHECK(
grad_output.size(n - 1) == weight.size(0),
"grad_output.size(",
n - 1,
")=",
grad_output.size(n - 1),
" must be weight.size(0)=",
weight.size(0));
TORCH_CHECK(
grad_output.sizes().slice(n) == output_size,
"grad_output[",
n,
":] shape",
grad_output.sizes().slice(n),
" must be equal to output size ",
output_size);
}
}
} // namespace internal
} // namespace native
} // namespace at
|