File size: 6,452 Bytes
7e50900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#pragma once

#include <algorithm>
#include <vector>

#include <ATen/div_rtn.h>
#include <ATen/core/Tensor.h>
#include <c10/util/irange.h>

#define TORCH_CHECK_DIM_SIZE(T, DIM, DIM_SIZE, SIZE) \
  TORCH_CHECK(                                       \
      T.dim() == DIM && T.size(DIM_SIZE) == SIZE,    \
      "Need " #T " of dimension ",                   \
      DIM,                                           \
      " and " #T ".size[",                           \
      DIM_SIZE,                                      \
      "] == ",                                       \
      SIZE,                                          \
      " but got input to be of shape ",              \
      T.sizes())

namespace at {
namespace native {
namespace internal {
namespace {
inline bool all_positive(IntArrayRef& arr) {
  return std::all_of(
      arr.begin(), arr.end(), [](int64_t item) { return item > 0; });
}

inline bool all_nonnegative(std::vector<int64_t>& arr) {
  return std::all_of(
      arr.begin(), arr.end(), [](int64_t item) { return item >= 0; });
}

} // namespace

// calculate the rear part of output tensor sizes
template <int64_t dim>
std::vector<int64_t> get_output_size(
    const Tensor& input,
    IntArrayRef kernel_size,
    IntArrayRef stride_size,
    IntArrayRef pad_size,
    IntArrayRef dilation_size) {
  std::vector<int64_t> sizes;
  for (const auto index : c10::irange(dim)) {
    sizes.push_back(
        div_rtn<int64_t>(
            input.size(index + input.dim() - dim) + 2 * pad_size[index] -
                (dilation_size[index] * (kernel_size[index] - 1) + 1),
            stride_size[index]) +
        1);
  }
  return sizes;
}

// calculate the sizes of output tensor
template <int64_t dim>
std::vector<int64_t> get_output_size(
    const Tensor& input,
    const Tensor& weight,
    IntArrayRef kernel_size,
    IntArrayRef stride_size,
    IntArrayRef pad_size,
    IntArrayRef dilation_size) {
  auto output_size = get_output_size<dim>(
      input, kernel_size, stride_size, pad_size, dilation_size);
  output_size.insert(output_size.begin(), weight.size(0));
  if (input.dim() == dim + 2) {
    output_size.insert(output_size.begin(), input.size(0));
  }
  return output_size;
}
/*
  slow_conv_dilated_shape_check - check user-input to dilated convolution
  forward and backward functions.
*/
template <int64_t dim>
void slow_conv_dilated_shape_check(
    const Tensor& input,
    const Tensor& weight,
    const Tensor& bias,
    const Tensor& grad_output,
    IntArrayRef kernel_size,
    IntArrayRef stride_size,
    IntArrayRef pad_size,
    IntArrayRef dilation_size) {
  /*
    When the following tensors are defined:

    bias, grad_weight, grad_output

    then these are assumed to be contiguous without checking
    because of these tensors are made contiguous by calling
    .contiguous() method or by resizing of zero-sized tensors in
    forward/backward functions.

    When grad_weight is defined then it is assumed without
    checking to have the same shape as weight, see backward
    functions.
   */
  // Check size arguments
  TORCH_CHECK(
      kernel_size.size() == dim,
      "kernel sizes length should be ",
      dim,
      ", but got ",
      kernel_size.size());
  TORCH_CHECK(
      stride_size.size() == dim,
      "strides length should be ",
      dim,
      ", but got ",
      stride_size.size());
  TORCH_CHECK(
      dilation_size.size() == dim,
      "dilations length should be ",
      dim,
      ", but got ",
      dilation_size.size());
  TORCH_CHECK(
      pad_size.size() == dim,
      "pads length should be ",
      dim,
      ", but got ",
      pad_size.size());

  TORCH_CHECK(
      all_positive(kernel_size),
      "kernel size should be greater than zero, but got ",
      kernel_size);
  TORCH_CHECK(
      all_positive(stride_size),
      "stride should be greater than zero, but got ",
      stride_size);
  TORCH_CHECK(
      all_positive(dilation_size),
      "dilation should be greater than zero, but got ",
      dilation_size);

  // check input
  TORCH_CHECK(input.defined(), "input must be defined");
  bool is_batch = input.dim() == dim + 2;
  int64_t n = (is_batch ? 2 : 1);
  int64_t ndim = n + dim;
  if (!is_batch) {
    // input dim has to be dim + 1 if not batched
    TORCH_CHECK(
        input.dim() == dim + 1,
        "input must be 4D or 5D tensor but got ",
        input.dim(),
        "D tensor");
  }

  // check output sizes
  auto output_size = get_output_size<dim>(
      input, kernel_size, stride_size, pad_size, dilation_size);

  TORCH_CHECK(
      all_nonnegative(output_size),
      "calculated output size ",
      output_size,
      " is too small (all sizes must be non-negative)");

  // check weight
  TORCH_CHECK(weight.defined(), "weight must be defined");
  TORCH_CHECK(
      weight.dim() == dim + 2,
      "weight must be ",
      dim + 2,
      "D tensor but got ",
      weight.dim(),
      "D tensor dim=",
      dim);
  TORCH_CHECK(
      weight.sizes().slice(2) == kernel_size,
      "weight[2:] shape ",
      weight.sizes().slice(2),
      " must be equal to kernel_size ",
      kernel_size);

  TORCH_CHECK_DIM_SIZE(input, input.dim(), (is_batch ? 1 : 0), weight.size(1));

  // check bias when present
  if (bias.defined()) {
    TORCH_CHECK(
        bias.dim() == 1,
        "bias must be 1D tensor but got ",
        bias.dim(),
        "D tensor");
    TORCH_CHECK_DIM_SIZE(bias, 1, 0, weight.size(0));
  }

  // check grad_output when present
  if (grad_output.defined()) {
    TORCH_CHECK(
        grad_output.dim() == ndim,
        "grad_output must be ",
        ndim,
        "D tensor but got ",
        grad_output.dim(),
        "D tensor");
    if (is_batch) {
      TORCH_CHECK(
          grad_output.size(0) == input.size(0),
          "grad_output.size(0)=",
          grad_output.size(0),
          " must be input.size(0)=",
          input.size(0));
    }
    TORCH_CHECK(
        grad_output.size(n - 1) == weight.size(0),
        "grad_output.size(",
        n - 1,
        ")=",
        grad_output.size(n - 1),
        " must be weight.size(0)=",
        weight.size(0));
    TORCH_CHECK(
        grad_output.sizes().slice(n) == output_size,
        "grad_output[",
        n,
        ":] shape",
        grad_output.sizes().slice(n),
        " must be equal to output size ",
        output_size);
  }
}

} // namespace internal
} // namespace native
} // namespace at