File size: 16,661 Bytes
7e50900 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
#pragma once
#include <ATen/ATen.h>
#include <ATen/Dispatch.h>
#include <ATen/Generator.h>
#include <ATen/Tensor.h>
#include <ATen/MemoryOverlap.h>
#include <ATen/NamedTensorUtils.h>
#include <ATen/native/Resize.h>
#include <ATen/native/TensorIterator.h>
#include <c10/util/Optional.h>
#include <limits>
#include <cmath>
namespace at {
namespace native {
namespace templates {
// ==================================================== Random ========================================================
// The purpose of `update_from` and `update_to` is to find the closest valid int64_t number that can be used as actual `from`.
// The current implementation of `random_` uses uint64_t arithmetics and casts the result to the target dtype(scalar_t).
// This casting can result in generating numbers that happen to be greater or equal to `to` value. For instance:
//
// auto actual = torch::empty({3, 3}, torch::half);
// actual.random_(0, 65504);
//
// If random's uint64_t arithmetics produces 65503 as a random value after casting to torch::half it becomes 65504
// and violates the requirement that random value must be less than `to`. To resolve this issue `update_from` and `update_to`
// moves `from` to the right and `to` to the left to the next closest value that won't go outside [from, to) after casting to
// the target dtype. For `to` = 65504 it moves left for (1 << (log2(to) - 11 + 1)) = 32 and becomes 65472, which is previous
// available number for torch::half dtype.
template<typename scalar_t>
int64_t update_from(int64_t from) {
static_assert(
std::is_floating_point<scalar_t>::value ||
std::is_same<scalar_t, at::Half>::value ||
std::is_same<scalar_t, at::BFloat16>::value, "scalar_t must be floating-point type");
const auto from_plus_1 = static_cast<int64_t>(static_cast<scalar_t>(from + 1));
if (from_plus_1 < from) {
int64_t from_ = std::abs(from + 1);
int n = 0;
while (from_ >>= 1) ++n;
// NOLINTNEXTLINE(clang-analyzer-core.UndefinedBinaryOperatorResult)
from = from_plus_1 + (1LL << (n - std::numeric_limits<scalar_t>::digits + 1));
}
return from;
}
template<typename scalar_t>
int64_t update_to(int64_t to) {
static_assert(
std::is_floating_point<scalar_t>::value ||
std::is_same<scalar_t, at::Half>::value ||
std::is_same<scalar_t, at::BFloat16>::value, "scalar_t must be floating-point type");
const auto to_minus_1 = static_cast<int64_t>(static_cast<scalar_t>(to - 1));
if (to_minus_1 >= to) {
int64_t to_ = std::abs(to - 1);
int n = 0;
while (to_ >>= 1) ++n;
// NOLINTNEXTLINE(clang-analyzer-core.UndefinedBinaryOperatorResult)
to = to_minus_1 - (1LL << (n - std::numeric_limits<scalar_t>::digits + 1));
}
return to;
}
template<template<typename> class random_kernel, typename RNG>
at::Tensor& random_impl(at::Tensor& self, c10::optional<Generator> generator) {
auto iter = at::TensorIterator::borrowing_nullary_op(self);
random_kernel<RNG>()(iter, generator);
return self;
}
#define CHECK_OUT_OF_BOUNDS(var, name, min, max, dtype) \
TORCH_CHECK(var >= min && var <= max, name , " is out of bounds for ", dtype); \
#define WARN_OUT_OF_BOUNDS(var, name, digits, dtype) \
if (var < -(1LL << digits) || var > (1LL << digits)) { \
TORCH_WARN(name , " is out of bounds [-(2^", digits, "), 2^", digits, "]. ", \
"Due to precision limitations ", dtype, " can support discrete uniform distribution only within this range. ", \
"This warning will become an error in version 1.7 release, please fix the code in advance"); \
}
static void check_from_to_in_range(int64_t from, int64_t to_inc, caffe2::TypeMeta dtype) {
const auto scalar_type = typeMetaToScalarType(dtype);
if (isFloatingType(scalar_type)) {
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, scalar_type, "check_random_fp_bounds", [&] {
const auto min = static_cast<double>(std::numeric_limits<scalar_t>::lowest());
const auto max = static_cast<double>(std::numeric_limits<scalar_t>::max());
CHECK_OUT_OF_BOUNDS(from, "from", min, max, dtype);
CHECK_OUT_OF_BOUNDS(to_inc, "to - 1", min, max, dtype);
constexpr auto digits = std::numeric_limits<scalar_t>::digits;
WARN_OUT_OF_BOUNDS(from, "from", digits, dtype);
WARN_OUT_OF_BOUNDS(to_inc, "to - 1", digits, dtype);
});
} else if (isIntegralType(scalar_type, /*includeBool=*/true)) {
AT_DISPATCH_INTEGRAL_TYPES_AND(at::ScalarType::Bool, scalar_type, "check_random_integral_bounds", [&]() {
const auto min = static_cast<int64_t>(std::numeric_limits<scalar_t>::lowest());
const auto max = static_cast<int64_t>(std::numeric_limits<scalar_t>::max());
CHECK_OUT_OF_BOUNDS(from, "from", min, max, dtype);
CHECK_OUT_OF_BOUNDS(to_inc, "to - 1", min, max, dtype);
});
} else {
TORCH_CHECK(false, "check_random_bounds handles only integral, floating-point and boolean types");
}
}
template<template<typename> class random_from_to_kernel, typename RNG>
at::Tensor& random_from_to_impl(at::Tensor& self, int64_t from, c10::optional<int64_t> to_opt, c10::optional<Generator> generator) {
uint64_t range = 0;
auto iter = at::TensorIterator::borrowing_nullary_op(self);
if (to_opt.has_value()) {
// [from, to)
int64_t to = *to_opt;
TORCH_CHECK(from < to, "random_ expects 'from' to be less than 'to', but got from=", from, " >= to=", to);
if (isFloatingType(iter.dtype())) {
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, self.scalar_type(), "random_update_from_to", [&] {
from = update_from<scalar_t>(from);
to = update_to<scalar_t>(to);
TORCH_CHECK(from < to, "random_ expects 'from' casted to dtype to be less than 'to' casted to dtype, but got from=", from, " >= to=", to);
});
}
check_from_to_in_range(from, to - 1, self.dtype());
range = static_cast<uint64_t>(to) - static_cast<uint64_t>(from);
random_from_to_kernel<RNG>()(iter, range, from, generator);
} else if (from != std::numeric_limits<int64_t>::lowest()) {
// [from, std::numeric_limits<int64_t>::max()]
int64_t to_inc = 0;
if (isFloatingType(iter.dtype())) {
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, self.scalar_type(), "random_from_to_range_calc", [&] {
constexpr int64_t scalar_t_max = static_cast<int64_t>(1) << std::numeric_limits<scalar_t>::digits;
to_inc = scalar_t_max > std::numeric_limits<int64_t>::max() ? std::numeric_limits<int64_t>::max() : static_cast<int64_t>(scalar_t_max);
from = update_from<scalar_t>(from);
TORCH_CHECK(from < to_inc, "random_ expects 'from' casted to dtype to be less than or equal to 'to_inc' casted to dtype, but got from=", from, " > to_inc=", to_inc);
});
} else if (isIntegralType(iter.dtype(), /*includeBool=*/true)) {
AT_DISPATCH_INTEGRAL_TYPES_AND(at::ScalarType::Bool, self.scalar_type(), "random_from_to_range_calc", [&] {
if (std::is_same<scalar_t, bool>::value) {
to_inc = static_cast<int64_t>(true);
} else {
to_inc = static_cast<int64_t>(std::numeric_limits<scalar_t>::max());
}
});
} else {
TORCH_CHECK(false, "random_from_to_impl handles only integral, floating-point and boolean types");
}
check_from_to_in_range(from, to_inc, self.dtype());
range = static_cast<uint64_t>(to_inc) - static_cast<uint64_t>(from) + 1;
random_from_to_kernel<RNG>()(iter, range, from, generator);
} else {
// [std::numeric_limits<int64_t>::lowest(), std::numeric_limits<int64_t>::max()]
// range = 2^64
random_from_to_kernel<RNG>()(iter, generator);
}
return self;
}
// ==================================================== Normal ========================================================
#define CHECK_NORMAL_TENSOR_STD(std) \
do { \
TORCH_CHECK( \
!std.is_complex(), \
"normal expects standard deviation to be non-complex"); \
TORCH_CHECK( \
std.numel() == 0 || std.is_meta() || std.min().ge(0).item<bool>(), \
"normal expects all elements of std >= 0.0"); \
} while (0)
#define CHECK_NORMAL_STD(std) \
TORCH_CHECK(std >= 0.0, "normal expects std >= 0.0, but found std ", std);
template<template<typename> class normal_kernel, typename RNG>
Tensor& normal_impl_(Tensor& self, double mean, double std, c10::optional<Generator> gen) {
CHECK_NORMAL_STD(std);
if (self.is_complex()) {
auto float_tensor = at::view_as_real(self);
// variance for normal distribution of the real and imaginary values
// is half of the input variance
normal_kernel<RNG>()(float_tensor, mean, std/(std::sqrt(2)), gen);
} else {
normal_kernel<RNG>()(self, mean, std, gen);
}
return self;
}
template<template<typename> class normal_kernel, typename RNG>
Tensor& normal_out_impl(Tensor& output, const Tensor& mean, double std, c10::optional<Generator> gen) {
CHECK_NORMAL_STD(std);
auto std_tensor = at::empty_like(output, MemoryFormat::Contiguous);
auto shape = at::infer_size(mean.sizes(), std_tensor.sizes());
at::native::resize_output(output, shape);
normal_impl_<normal_kernel, RNG>(output, 0, std, gen);
output.add_(mean);
return output;
}
template<template<typename> class normal_kernel, typename RNG>
Tensor& normal_out_impl(Tensor& output, double mean, const Tensor& std, c10::optional<Generator> gen) {
CHECK_NORMAL_TENSOR_STD(std);
auto mean_tensor = at::full({}, mean, output.options());
auto shape = at::infer_size(mean_tensor.sizes(), std.sizes());
at::native::resize_output(output, shape);
normal_impl_<normal_kernel, RNG>(output, 0, 1, gen);
// CUDA NB: addcmul_out copies the tensor to be added into the output.
// The previous function here was addcmul_out(output, mean_tensor, output, std, 1);
// The third argument is not a constant reference and hence the samples in output are overwritten.
// Consequently, the computation performed is mean_tensor + mean_tensor * std instead of mean_tensor + output * std
output.mul_(std).add_(mean_tensor);
return output;
}
template<template<typename> class normal_kernel, typename RNG>
Tensor& normal_out_impl(Tensor& output, const Tensor& mean, const Tensor& std, c10::optional<Generator> gen) {
CHECK_NORMAL_TENSOR_STD(std);
auto shape = at::infer_size(mean.sizes(), std.sizes());
at::native::resize_output(output, shape);
normal_impl_<normal_kernel, RNG>(output, 0, 1, gen);
// CUDA NB: addcmul_out copies the tensor to be added into the output.
// The previous function here was addcmul_out(output, mean, output, std, 1);
// The third argument is not a constant reference and hence the samples in output are overwritten.
// Consequently, the computation performed is mean + mean * std instead of mean + output * std
output.mul_(std).add_(mean);
return output;
}
template<template<typename> class normal_kernel, typename RNG>
Tensor normal_impl(const Tensor& mean, double std, c10::optional<Generator> gen) {
CHECK_NORMAL_STD(std);
Tensor ret = at::empty_like(mean, MemoryFormat::Contiguous);
normal_out_impl<normal_kernel, RNG>(ret, mean, std, gen);
return ret;
}
template<template<typename> class normal_kernel, typename RNG>
Tensor normal_impl(double mean, const Tensor& std, c10::optional<Generator> gen) {
CHECK_NORMAL_TENSOR_STD(std);
Tensor ret = at::empty_like(std, MemoryFormat::Contiguous);
normal_out_impl<normal_kernel, RNG>(ret, mean, std, gen);
return ret;
}
template<template<typename> class normal_kernel, typename RNG>
Tensor normal_impl(const Tensor& mean, const Tensor& std, c10::optional<Generator> gen) {
CHECK_NORMAL_TENSOR_STD(std);
auto shape = at::infer_size(mean.sizes(), std.sizes());
Tensor ret = at::empty(shape, mean.options(), MemoryFormat::Contiguous);
normal_out_impl<normal_kernel, RNG>(ret, mean, std, gen);
return ret;
}
// ==================================================== Uniform =======================================================
template<template<typename> class uniform_kernel, typename RNG>
at::Tensor& uniform_impl_(at::Tensor& self, double from, double to, c10::optional<Generator> generator) {
if (self.is_complex()) {
auto float_tensor = at::view_as_real(self);
uniform_impl_<uniform_kernel, RNG>(float_tensor, from, to, generator);
} else {
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, self.scalar_type(), "check_uniform_bounds", [&] {
const auto dtype = self.dtype();
const auto min = static_cast<double>(std::numeric_limits<scalar_t>::lowest());
const auto max = static_cast<double>(std::numeric_limits<scalar_t>::max());
CHECK_OUT_OF_BOUNDS(from, "from", min, max, dtype);
CHECK_OUT_OF_BOUNDS(to, "to", min, max, dtype);
TORCH_CHECK(from <= to, "uniform_ expects to return a [from, to) range, but found from=", from, " > to=", to);
TORCH_CHECK((to - from) <= std::numeric_limits<scalar_t>::max(),
"uniform_ expects to-from <= std::numeric_limits<", toString(self.scalar_type()),
">::max(), but found to=", to, " and from=", from,
" which result in to-from to exceed the limit");
from = std::min(std::max(from, min), max);
to = std::max(std::min(to, max), min);
});
auto iter = at::TensorIterator::borrowing_nullary_op(self);
uniform_kernel<RNG>()(iter, from, to, generator);
}
return self;
}
// ================================================== LogNormal =======================================================
template<template<typename> class log_normal_kernel, typename RNG>
at::Tensor& log_normal_impl_(at::Tensor& self, double mean, double std, c10::optional<Generator> gen) {
TORCH_CHECK(std > 0.0, "log_normal_ expects std > 0.0, but found std=", std);
auto iter = TensorIterator::borrowing_nullary_op(self);
log_normal_kernel<RNG>()(iter, mean, std, gen);
return self;
}
// =================================================== Geometric ======================================================
template<template<typename> class geometric_kernel, typename RNG>
Tensor& geometric_impl_(Tensor& self, double p, c10::optional<Generator> gen) {
TORCH_CHECK(0 < p && p < 1, "geometric_ expects p to be in (0, 1), but got p=", p);
auto iter = TensorIterator::borrowing_nullary_op(self);
geometric_kernel<RNG>()(iter, p, gen);
return self;
}
// ================================================== Exponential =====================================================
template<template<typename> class exponential_kernel, typename RNG>
Tensor& exponential_impl_(Tensor& self, double lambda, c10::optional<Generator> gen) {
TORCH_CHECK(lambda >= 0.0, "exponential_ expects lambda >= 0.0, but found lambda=", lambda);
auto iter = TensorIterator::borrowing_nullary_op(self);
exponential_kernel<RNG>()(iter, lambda, gen);
return self;
}
// ==================================================== Cauchy ========================================================
template<template<typename> class cauchy_kernel, typename RNG>
Tensor& cauchy_impl_(Tensor& self, double median, double sigma, c10::optional<Generator> gen) {
auto iter = TensorIterator::borrowing_nullary_op(self);
cauchy_kernel<RNG>()(iter, median, sigma, gen);
return self;
}
// ==================================================== Bernoulli =====================================================
template<template<typename> class bernoulli_tensor_kernel, typename RNG>
Tensor& bernoulli_impl_(Tensor& self, const Tensor& p_, c10::optional<Generator> gen) {
NoNamesGuard guard;
at::assert_no_internal_overlap(self);
bernoulli_tensor_kernel<RNG>()(self, p_, gen);
return self;
}
template<template<typename> class bernoulli_scalar_kernel, typename RNG>
Tensor& bernoulli_impl_(Tensor& self, double p, c10::optional<Generator> gen) {
TORCH_CHECK(0 <= p && p <= 1, "bernoulli_ expects p to be in [0, 1], but got p=", p);
at::assert_no_internal_overlap(self);
bernoulli_scalar_kernel<RNG>()(self, p, gen);
return self;
}
template<template<typename> class bernoulli_tensor_kernel, typename RNG>
Tensor& bernoulli_out_impl(Tensor& result, const Tensor& self, c10::optional<Generator> gen) {
// result.resize_as_(self) requires self to have same dtype as result, so we
// use resize_ instead.
// TODO: Fix resize_as_. See pytorch/pytorch#11665.
result.resize_(self.sizes());
bernoulli_impl_<bernoulli_tensor_kernel, RNG>(result, self, gen);
namedinference::propagate_names(result, self);
return result;
}
#undef CHECK_OUT_OF_BOUNDS
#undef WARN_OUT_OF_BOUNDS
}}}
|