File size: 11,354 Bytes
7e50900 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
#include <ATen/core/Tensor.h>
#include <ATen/div_rtn.h>
#include <ATen/TensorUtils.h>
#include <ATen/native/DispatchStub.h>
#include <c10/util/irange.h>
#pragma once
namespace at {
namespace native {
using max_pool2d_fn = void(*)(const Tensor& output, const Tensor& indices, const Tensor& input,
int kW, int kH, int dW, int dH, int padW, int padH, int dilationW, int dilationH);
using max_pool2d_backward_fn = void(*)(const Tensor& grad_input, const Tensor& grad_output, const Tensor& indices);
DECLARE_DISPATCH(max_pool2d_fn, max_pool2d_kernel);
DECLARE_DISPATCH(max_pool2d_backward_fn, max_pool2d_backward_kernel);
// averge pooling has same signature for forward and backward
using avg_pool2d_fn = void(*)(const Tensor& output, const Tensor& input, int64_t kW, int64_t kH,
int64_t dW, int64_t dH, int64_t padW, int64_t padH, bool count_include_pad, c10::optional<int64_t> divisor_override);
using avg_pool2d_backward_fn = void(*)(const Tensor& output, const Tensor& input, int kW, int kH,
int dW, int dH, int padW, int padH, bool count_include_pad, c10::optional<int64_t> divisor_override);
DECLARE_DISPATCH(avg_pool2d_fn, avg_pool2d_kernel);
DECLARE_DISPATCH(avg_pool2d_backward_fn, avg_pool2d_backward_kernel);
namespace {
template <typename dest_t, typename src_t>
static inline dest_t
safe_downcast(src_t v)
{
TORCH_CHECK(std::numeric_limits<dest_t>::min() <= v && v <= std::numeric_limits<dest_t>::max(),
"integer out of range");
return static_cast<dest_t>(v);
}
template<typename T>
static inline T pooling_output_shape_pad_lr(
T inputSize, T kernelSize, T pad_l, T pad_r, T stride, T dilation,
bool ceil_mode) {
T outputSize = div_rtn<T>(
inputSize + pad_l + pad_r - dilation * (kernelSize - 1) - 1 +
(ceil_mode ? stride - 1 : 0), stride) + 1;
if (ceil_mode) {
// ensure that the last pooling starts inside the image
// needed to avoid problems in ceil mode
if ((outputSize - 1) * stride >= inputSize + pad_l) {
--outputSize;
}
}
return outputSize;
}
template<typename T>
static inline T pooling_output_shape(
T inputSize, T kernelSize, T pad, T stride, T dilation, bool ceil_mode) {
TORCH_CHECK(stride != 0, "stride should not be zero");
TORCH_CHECK(pad >= 0,
"pad must be non-negative, but got pad: ", pad);
TORCH_CHECK(pad <= kernelSize / 2,
"pad should be at most half of kernel size, but got pad=",
pad, " and kernel_size=", kernelSize)
return pooling_output_shape_pad_lr(
inputSize, kernelSize, pad, pad, stride, dilation, ceil_mode);
}
inline std::pair<int64_t, int64_t> pooling_same_mode_padding_lr(
int64_t inputSize, int64_t kernelSize, int64_t stride, int64_t dilation) {
// NOTE: with strides, the output shape is ceil(inputSize/stride)
auto total_padding = dilation * (kernelSize - 1);
// Prefer symmetric padding if possible
if (stride > 2 && (total_padding % 2 == 1)) {
// The floor in the output size calculation gives us a little wiggle room
auto wiggle_room = inputSize % stride - 1;
if (wiggle_room > 0) {
--total_padding;
}
}
auto left = total_padding / 2;
return {left, total_padding - left};
}
// AveragePool2d/DilatedMaxPool2d (forward)
static inline void
pool2d_shape_check(
const Tensor& input,
int kH, int kW, int dH, int dW, int padH, int padW, int dilationH, int dilationW,
int64_t nInputPlane,
int64_t inputHeight, int64_t inputWidth,
int64_t outputHeight, int64_t outputWidth, MemoryFormat memory_format)
{
const int64_t ndim = input.ndimension();
const int64_t nOutputPlane = nInputPlane;
TORCH_CHECK(kW > 0 && kH > 0,
"kernel size should be greater than zero, but got ",
"kH: ", kH, " kW: ", kW);
TORCH_CHECK(dW > 0 && dH > 0,
"stride should be greater than zero, but got "
"dH: ", dH, " dW: ", dW);
TORCH_CHECK(dilationH > 0 && dilationW > 0,
"dilation should be greater than zero, but got ",
"dilationH: ", dilationH, " dilationW: ", dilationW);
bool valid_dims = input.size(1) != 0 && input.size(2) != 0;
if (memory_format == at::MemoryFormat::ChannelsLast){
// Expect tensor in NHWC format and allow 0-dim only for N.
TORCH_CHECK((ndim == 4 && valid_dims && input.size(3) != 0),
"Expected 4D (batch mode) tensor expected for input with channels_last layout"
" with optional 0 dim batch size for input, but got: ", input.sizes());
} else {
TORCH_CHECK((ndim == 3 && input.size(0) != 0 && valid_dims) ||
(ndim == 4 && valid_dims && input.size(3) != 0),
"Expected 3D or 4D (batch mode) tensor with optional 0 dim batch size for input, but got:",
input.sizes());
}
TORCH_CHECK(kW/2 >= padW && kH/2 >= padH,
"pad should be smaller than or equal to half of kernel size, but got ",
"padW = ", padW, ", padH = ", padH, ", kW = ", kW, ", kH = ", kH);
TORCH_CHECK(outputWidth >= 1 && outputHeight >= 1,
"Given input size: (",
nInputPlane, "x", inputHeight, "x", inputWidth, "). ",
"Calculated output size: (",
nOutputPlane, "x", outputHeight, "x", outputWidth, "). ",
"Output size is too small");
}
// DilatedMaxPool2d (backward)
static inline void
max_pool2d_backward_shape_check(
const Tensor& input,
const Tensor& gradOutput,
const Tensor& indices,
int kH, int kW, int dH, int dW, int padH, int padW, int dilationH, int dilationW,
int64_t nInputPlane,
int64_t inputHeight, int64_t inputWidth,
int64_t outputHeight, int64_t outputWidth, MemoryFormat memory_format)
{
pool2d_shape_check(
input,
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth, memory_format);
const int64_t ndim = input.ndimension();
const int64_t nOutputPlane = nInputPlane;
check_dim_size(gradOutput, ndim, ndim-3, nOutputPlane);
check_dim_size(gradOutput, ndim, ndim-2, outputHeight);
check_dim_size(gradOutput, ndim, ndim-1, outputWidth);
check_dim_size(indices, ndim, ndim-3, nOutputPlane);
check_dim_size(indices, ndim, ndim-2, outputHeight);
check_dim_size(indices, ndim, ndim-1, outputWidth);
}
// AveragePool2d (backward)
static inline void
avg_pool2d_backward_shape_check(
const Tensor& input,
const Tensor& gradOutput,
int64_t /*nbatch*/,
int kH, int kW, int dH, int dW, int padH, int padW,
int64_t nInputPlane,
int64_t inputHeight, int64_t inputWidth,
int64_t outputHeight, int64_t outputWidth,
MemoryFormat memory_format)
{
pool2d_shape_check(
input,
kH, kW, dH, dW, padH, padW, 1, 1,
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
memory_format);
const int64_t ndim = input.ndimension();
const int64_t nOutputPlane = nInputPlane;
check_dim_size(gradOutput, ndim, ndim-3, nOutputPlane);
check_dim_size(gradOutput, ndim, ndim-2, outputHeight);
check_dim_size(gradOutput, ndim, ndim-1, outputWidth);
}
// AveragePool3d/DilatedMaxPool3d (forward)
static inline void
pool3d_shape_check(
const Tensor& input,
int64_t nslices,
int kT, int kH, int kW,
int dT, int dH, int dW,
int pT, int pH, int pW,
int dilationT, int dilationH, int dilationW,
int64_t itime, int64_t iheight, int64_t iwidth,
int64_t otime, int64_t oheight, int64_t owidth,
const char *fn_name,
bool check_input_size=false)
{
const int64_t ndim = input.ndimension();
TORCH_CHECK(kT > 0 && kW > 0 && kH > 0,
"kernel size should be greater than zero, but got ",
"kT: ", kT, " kH: ", kH, " kW: ", kW);
TORCH_CHECK(dT > 0 && dW > 0 && dH > 0,
"stride should be greater than zero, but got ",
"dT: ", dT, " dH: ", dH, " dW: ", dW);
TORCH_CHECK(dilationT > 0 && dilationW > 0 && dilationH > 0,
"dilation should be greater than zero, but got ",
"dilationT: ", dilationT, " dilationH: ", dilationH, " dilationW: ", dilationW);
TORCH_CHECK(ndim == 4 || ndim == 5,
fn_name, ": Expected 4D or 5D tensor for input, but got: ", input.sizes());
for (const auto i : c10::irange(ndim)) {
if (ndim == 5 && i == 0) {
// size of batch-dim can be 0.
continue;
}
TORCH_CHECK(
input.size(i) > 0,
fn_name,
": Expected input's non-batch dimensions to have positive length,"
" but input has a shape of ",
input.sizes(),
" and non-batch dimension ",
input.size(i),
" has length zero!")
}
if (check_input_size) { // AveragePool3d
TORCH_CHECK(itime >= kT && iheight >= kH && iwidth >= kW,
"input image ", "(T: ", itime, " H: ", iheight, " W: ", iwidth, ") smaller than ",
"kernel size ", "(kT: ", kT, " kH: ", kH, " kW: ", kW, ")");
}
TORCH_CHECK(kT/2 >= pT && kW/2 >= pW && kH/2 >= pH,
"pad should be smaller than or equal to half of kernel size, but got "
"kT: ", kT, " kW: ", kW, " kH: ", kH, " padT: ", pT, " padW: ", pW, " padH: ", pH);
TORCH_CHECK(otime >= 1 && owidth >= 1 && oheight >= 1,
"Given input size: (",
nslices,"x", itime, "x", iheight, "x", iwidth, "). ",
"Calculated output size: (",
nslices, "x", otime, "x", oheight, "x", owidth, "). ",
"Output size is too small");
}
static inline void
max_pool3d_backward_shape_check(
const Tensor& input,
const Tensor& gradOutput,
const Tensor& indices,
int64_t nslices,
int kT, int kH, int kW,
int dT, int dH, int dW,
int pT, int pH, int pW,
int dilationT, int dilationH, int dilationW,
int64_t itime, int64_t iheight, int64_t iwidth,
int64_t otime, int64_t oheight, int64_t owidth,
const char* fn_name)
{
const int64_t ndim = input.ndimension();
pool3d_shape_check(
input,
nslices,
kT, kH, kW,
dT, dH, dW,
pT, pH, pW,
dilationT, dilationH, dilationW,
itime, iheight, iwidth,
otime, oheight, owidth, fn_name);
check_dim_size(gradOutput, ndim, ndim-4, nslices);
check_dim_size(gradOutput, ndim, ndim-3, otime);
check_dim_size(gradOutput, ndim, ndim-2, oheight);
check_dim_size(gradOutput, ndim, ndim-1, owidth);
check_dim_size(indices, ndim, ndim-4, nslices);
check_dim_size(indices, ndim, ndim-3, otime);
check_dim_size(indices, ndim, ndim-2, oheight);
check_dim_size(indices, ndim, ndim-1, owidth);
}
static inline void
avg_pool3d_backward_shape_check(
const Tensor& input,
const Tensor& gradOutput,
int64_t nslices,
int kT, int kH, int kW,
int dT, int dH, int dW,
int pT, int pH, int pW,
int64_t itime, int64_t iheight, int64_t iwidth,
int64_t otime, int64_t oheight, int64_t owidth,
const char *fn_name)
{
const int64_t ndim = input.ndimension();
pool3d_shape_check(
input,
nslices,
kT, kH, kW,
dT, dH, dW,
pT, pH, pW,
1, 1, 1,
itime, iheight, iwidth,
otime, oheight, owidth,
fn_name, true);
check_dim_size(gradOutput, ndim, ndim-4, nslices);
check_dim_size(gradOutput, ndim, ndim-3, otime);
check_dim_size(gradOutput, ndim, ndim-2, oheight);
check_dim_size(gradOutput, ndim, ndim-1, owidth);
}
} // namespace
} // at::native
} // at
|