File size: 11,354 Bytes
7e50900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
#include <ATen/core/Tensor.h>
#include <ATen/div_rtn.h>
#include <ATen/TensorUtils.h>
#include <ATen/native/DispatchStub.h>
#include <c10/util/irange.h>

#pragma once

namespace at {
namespace native {

using max_pool2d_fn = void(*)(const Tensor& output, const Tensor& indices, const Tensor& input,
    int kW, int kH, int dW, int dH, int padW, int padH, int dilationW, int dilationH);
using max_pool2d_backward_fn = void(*)(const Tensor& grad_input, const Tensor& grad_output, const Tensor& indices);

DECLARE_DISPATCH(max_pool2d_fn, max_pool2d_kernel);
DECLARE_DISPATCH(max_pool2d_backward_fn, max_pool2d_backward_kernel);

// averge pooling has same signature for forward and backward
using avg_pool2d_fn = void(*)(const Tensor& output, const Tensor& input, int64_t kW, int64_t kH,
    int64_t dW, int64_t dH, int64_t padW, int64_t padH, bool count_include_pad, c10::optional<int64_t> divisor_override);
using avg_pool2d_backward_fn = void(*)(const Tensor& output, const Tensor& input, int kW, int kH,
    int dW, int dH, int padW, int padH, bool count_include_pad, c10::optional<int64_t> divisor_override);

DECLARE_DISPATCH(avg_pool2d_fn, avg_pool2d_kernel);
DECLARE_DISPATCH(avg_pool2d_backward_fn, avg_pool2d_backward_kernel);

namespace {

template <typename dest_t, typename src_t>
static inline dest_t
safe_downcast(src_t v)
{
  TORCH_CHECK(std::numeric_limits<dest_t>::min() <= v && v <= std::numeric_limits<dest_t>::max(),
              "integer out of range");

  return static_cast<dest_t>(v);
}

template<typename T>
static inline T pooling_output_shape_pad_lr(
        T inputSize, T kernelSize, T pad_l, T pad_r, T stride, T dilation,
        bool ceil_mode) {
    T outputSize = div_rtn<T>(
        inputSize + pad_l + pad_r - dilation * (kernelSize - 1) - 1 +
        (ceil_mode ? stride - 1 : 0), stride) + 1;
    if (ceil_mode) {
        // ensure that the last pooling starts inside the image
        // needed to avoid problems in ceil mode
        if ((outputSize - 1) * stride >= inputSize + pad_l) {
          --outputSize;
        }
    }
    return outputSize;
}

template<typename T>
static inline T pooling_output_shape(
      T inputSize, T kernelSize, T pad, T stride, T dilation, bool ceil_mode) {
    TORCH_CHECK(stride != 0, "stride should not be zero");
    TORCH_CHECK(pad >= 0,
                "pad must be non-negative, but got pad: ", pad);
    TORCH_CHECK(pad <= kernelSize / 2,
                "pad should be at most half of kernel size, but got pad=",
                pad, " and kernel_size=", kernelSize)
    return pooling_output_shape_pad_lr(
        inputSize, kernelSize, pad, pad, stride, dilation, ceil_mode);
}

inline std::pair<int64_t, int64_t> pooling_same_mode_padding_lr(
    int64_t inputSize, int64_t kernelSize, int64_t stride, int64_t dilation) {
  // NOTE: with strides, the output shape is ceil(inputSize/stride)
  auto total_padding = dilation * (kernelSize - 1);

  // Prefer symmetric padding if possible
  if (stride > 2 && (total_padding % 2 == 1)) {
    // The floor in the output size calculation gives us a little wiggle room
    auto wiggle_room = inputSize % stride - 1;
    if (wiggle_room > 0) {
      --total_padding;
    }
  }

  auto left = total_padding / 2;
  return {left, total_padding - left};
}


// AveragePool2d/DilatedMaxPool2d (forward)
static inline void
pool2d_shape_check(
  const Tensor& input,
  int kH, int kW, int dH, int dW, int padH, int padW, int dilationH, int dilationW,
  int64_t nInputPlane,
  int64_t inputHeight, int64_t inputWidth,
  int64_t outputHeight, int64_t outputWidth, MemoryFormat memory_format)
{
  const int64_t ndim = input.ndimension();
  const int64_t nOutputPlane = nInputPlane;

  TORCH_CHECK(kW > 0 && kH > 0,
              "kernel size should be greater than zero, but got ",
              "kH: ", kH, " kW: ", kW);
  TORCH_CHECK(dW > 0 && dH > 0,
              "stride should be greater than zero, but got "
              "dH: ", dH, " dW: ", dW);
  TORCH_CHECK(dilationH > 0 && dilationW > 0,
              "dilation should be greater than zero, but got ",
              "dilationH: ", dilationH, " dilationW: ", dilationW);

  bool valid_dims = input.size(1) != 0 && input.size(2) != 0;
  if (memory_format == at::MemoryFormat::ChannelsLast){
    // Expect tensor in NHWC format and allow 0-dim only for N.
    TORCH_CHECK((ndim == 4 && valid_dims && input.size(3) != 0),
      "Expected 4D (batch mode) tensor expected for input with channels_last layout"
      " with optional 0 dim batch size for input, but got: ", input.sizes());
  } else {
    TORCH_CHECK((ndim == 3 && input.size(0) != 0 && valid_dims) ||
      (ndim == 4 && valid_dims && input.size(3) != 0),
      "Expected 3D or 4D (batch mode) tensor with optional 0 dim batch size for input, but got:",
      input.sizes());
  }

  TORCH_CHECK(kW/2 >= padW && kH/2 >= padH,
              "pad should be smaller than or equal to half of kernel size, but got ",
              "padW = ", padW, ", padH = ", padH, ", kW = ", kW, ", kH = ", kH);

  TORCH_CHECK(outputWidth >= 1 && outputHeight >= 1,
              "Given input size: (",
              nInputPlane, "x", inputHeight, "x", inputWidth, "). ",
              "Calculated output size: (",
              nOutputPlane, "x", outputHeight, "x", outputWidth, "). ",
              "Output size is too small");
}

// DilatedMaxPool2d (backward)
static inline void
max_pool2d_backward_shape_check(
  const Tensor& input,
  const Tensor& gradOutput,
  const Tensor& indices,
  int kH, int kW, int dH, int dW, int padH, int padW, int dilationH, int dilationW,
  int64_t nInputPlane,
  int64_t inputHeight, int64_t inputWidth,
  int64_t outputHeight, int64_t outputWidth, MemoryFormat memory_format)
{
  pool2d_shape_check(
    input,
    kH, kW, dH, dW, padH, padW, dilationH, dilationW,
    nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth, memory_format);

  const int64_t ndim = input.ndimension();
  const int64_t nOutputPlane = nInputPlane;

  check_dim_size(gradOutput, ndim, ndim-3, nOutputPlane);
  check_dim_size(gradOutput, ndim, ndim-2, outputHeight);
  check_dim_size(gradOutput, ndim, ndim-1, outputWidth);

  check_dim_size(indices, ndim, ndim-3, nOutputPlane);
  check_dim_size(indices, ndim, ndim-2, outputHeight);
  check_dim_size(indices, ndim, ndim-1, outputWidth);
}

// AveragePool2d (backward)
static inline void
avg_pool2d_backward_shape_check(
  const Tensor& input,
  const Tensor& gradOutput,
  int64_t /*nbatch*/,
  int kH, int kW, int dH, int dW, int padH, int padW,
  int64_t nInputPlane,
  int64_t inputHeight, int64_t inputWidth,
  int64_t outputHeight, int64_t outputWidth,
  MemoryFormat memory_format)
{
  pool2d_shape_check(
    input,
    kH, kW, dH, dW, padH, padW, 1, 1,
    nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
    memory_format);

  const int64_t ndim = input.ndimension();
  const int64_t nOutputPlane = nInputPlane;

  check_dim_size(gradOutput, ndim, ndim-3, nOutputPlane);
  check_dim_size(gradOutput, ndim, ndim-2, outputHeight);
  check_dim_size(gradOutput, ndim, ndim-1, outputWidth);
}

// AveragePool3d/DilatedMaxPool3d (forward)
static inline void
pool3d_shape_check(
  const Tensor& input,
  int64_t nslices,
  int kT, int kH, int kW,
  int dT, int dH, int dW,
  int pT, int pH, int pW,
  int dilationT, int dilationH, int dilationW,
  int64_t itime, int64_t iheight, int64_t iwidth,
  int64_t otime, int64_t oheight, int64_t owidth,
  const char *fn_name,
  bool check_input_size=false)
{
  const int64_t ndim = input.ndimension();

  TORCH_CHECK(kT > 0 && kW > 0 && kH > 0,
              "kernel size should be greater than zero, but got ",
              "kT: ", kT, " kH: ", kH, " kW: ", kW);
  TORCH_CHECK(dT > 0 && dW > 0 && dH > 0,
              "stride should be greater than zero, but got ",
              "dT: ", dT, " dH: ", dH, " dW: ", dW);
  TORCH_CHECK(dilationT > 0 && dilationW > 0 && dilationH > 0,
              "dilation should be greater than zero, but got ",
              "dilationT: ", dilationT, " dilationH: ", dilationH, " dilationW: ", dilationW);

  TORCH_CHECK(ndim == 4 || ndim == 5,
              fn_name, ": Expected 4D or 5D tensor for input, but got: ", input.sizes());

  for (const auto i : c10::irange(ndim)) {
    if (ndim == 5 && i == 0) {
      // size of batch-dim can be 0.
      continue;
    }
    TORCH_CHECK(
        input.size(i) > 0,
        fn_name,
        ": Expected input's non-batch dimensions to have positive length,"
        " but input has a shape of ",
        input.sizes(),
        " and non-batch dimension ",
        input.size(i),
        " has length zero!")
  }

  if (check_input_size) { // AveragePool3d
    TORCH_CHECK(itime >= kT && iheight >= kH && iwidth >= kW,
                "input image ", "(T: ", itime, " H: ", iheight, " W: ", iwidth, ") smaller than ",
                "kernel size ", "(kT: ", kT, " kH: ", kH, " kW: ", kW, ")");
  }

  TORCH_CHECK(kT/2 >= pT && kW/2 >= pW && kH/2 >= pH,
              "pad should be smaller than or equal to half of kernel size, but got "
              "kT: ", kT, " kW: ", kW, " kH: ", kH, " padT: ", pT, " padW: ", pW, " padH: ", pH);

  TORCH_CHECK(otime >= 1 && owidth >= 1 && oheight >= 1,
              "Given input size: (",
              nslices,"x", itime, "x", iheight, "x", iwidth, "). ",
              "Calculated output size: (",
              nslices, "x", otime, "x", oheight, "x", owidth, "). ",
              "Output size is too small");
}

static inline void
max_pool3d_backward_shape_check(
  const Tensor& input,
  const Tensor& gradOutput,
  const Tensor& indices,
  int64_t nslices,
  int kT, int kH, int kW,
  int dT, int dH, int dW,
  int pT, int pH, int pW,
  int dilationT, int dilationH, int dilationW,
  int64_t itime, int64_t iheight, int64_t iwidth,
  int64_t otime, int64_t oheight, int64_t owidth,
  const char* fn_name)
{
  const int64_t ndim = input.ndimension();

  pool3d_shape_check(
    input,
    nslices,
    kT, kH, kW,
    dT, dH, dW,
    pT, pH, pW,
    dilationT, dilationH, dilationW,
    itime, iheight, iwidth,
    otime, oheight, owidth, fn_name);

  check_dim_size(gradOutput, ndim, ndim-4, nslices);
  check_dim_size(gradOutput, ndim, ndim-3, otime);
  check_dim_size(gradOutput, ndim, ndim-2, oheight);
  check_dim_size(gradOutput, ndim, ndim-1, owidth);

  check_dim_size(indices, ndim, ndim-4, nslices);
  check_dim_size(indices, ndim, ndim-3, otime);
  check_dim_size(indices, ndim, ndim-2, oheight);
  check_dim_size(indices, ndim, ndim-1, owidth);
}

static inline void
avg_pool3d_backward_shape_check(
  const Tensor& input,
  const Tensor& gradOutput,
  int64_t nslices,
  int kT, int kH, int kW,
  int dT, int dH, int dW,
  int pT, int pH, int pW,
  int64_t itime, int64_t iheight, int64_t iwidth,
  int64_t otime, int64_t oheight, int64_t owidth,
  const char *fn_name)
{
  const int64_t ndim = input.ndimension();

  pool3d_shape_check(
    input,
    nslices,
    kT, kH, kW,
    dT, dH, dW,
    pT, pH, pW,
    1, 1, 1,
    itime, iheight, iwidth,
    otime, oheight, owidth,
    fn_name, true);

  check_dim_size(gradOutput, ndim, ndim-4, nslices);
  check_dim_size(gradOutput, ndim, ndim-3, otime);
  check_dim_size(gradOutput, ndim, ndim-2, oheight);
  check_dim_size(gradOutput, ndim, ndim-1, owidth);
}

} // namespace

} // at::native
} // at