File size: 31,971 Bytes
7e50900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
/*
    pybind11/eigen.h: Transparent conversion for dense and sparse Eigen matrices

    Copyright (c) 2016 Wenzel Jakob <[email protected]>

    All rights reserved. Use of this source code is governed by a
    BSD-style license that can be found in the LICENSE file.
*/

#pragma once

/* HINT: To suppress warnings originating from the Eigen headers, use -isystem.
   See also:
       https://stackoverflow.com/questions/2579576/i-dir-vs-isystem-dir
       https://stackoverflow.com/questions/1741816/isystem-for-ms-visual-studio-c-compiler
*/

#include "numpy.h"

// The C4127 suppression was introduced for Eigen 3.4.0. In theory we could
// make it version specific, or even remove it later, but considering that
// 1. C4127 is generally far more distracting than useful for modern template code, and
// 2. we definitely want to ignore any MSVC warnings originating from Eigen code,
//    it is probably best to keep this around indefinitely.
#if defined(_MSC_VER)
#    pragma warning(push)
#    pragma warning(disable : 4127) // C4127: conditional expression is constant
#    pragma warning(disable : 5054) // https://github.com/pybind/pybind11/pull/3741
//       C5054: operator '&': deprecated between enumerations of different types
#endif

#include <Eigen/Core>
#include <Eigen/SparseCore>

#if defined(_MSC_VER)
#    pragma warning(pop)
#endif

// Eigen prior to 3.2.7 doesn't have proper move constructors--but worse, some classes get implicit
// move constructors that break things.  We could detect this an explicitly copy, but an extra copy
// of matrices seems highly undesirable.
static_assert(EIGEN_VERSION_AT_LEAST(3, 2, 7),
              "Eigen support in pybind11 requires Eigen >= 3.2.7");

PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)

// Provide a convenience alias for easier pass-by-ref usage with fully dynamic strides:
using EigenDStride = Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic>;
template <typename MatrixType>
using EigenDRef = Eigen::Ref<MatrixType, 0, EigenDStride>;
template <typename MatrixType>
using EigenDMap = Eigen::Map<MatrixType, 0, EigenDStride>;

PYBIND11_NAMESPACE_BEGIN(detail)

#if EIGEN_VERSION_AT_LEAST(3, 3, 0)
using EigenIndex = Eigen::Index;
template <typename Scalar, int Flags, typename StorageIndex>
using EigenMapSparseMatrix = Eigen::Map<Eigen::SparseMatrix<Scalar, Flags, StorageIndex>>;
#else
using EigenIndex = EIGEN_DEFAULT_DENSE_INDEX_TYPE;
template <typename Scalar, int Flags, typename StorageIndex>
using EigenMapSparseMatrix = Eigen::MappedSparseMatrix<Scalar, Flags, StorageIndex>;
#endif

// Matches Eigen::Map, Eigen::Ref, blocks, etc:
template <typename T>
using is_eigen_dense_map = all_of<is_template_base_of<Eigen::DenseBase, T>,
                                  std::is_base_of<Eigen::MapBase<T, Eigen::ReadOnlyAccessors>, T>>;
template <typename T>
using is_eigen_mutable_map = std::is_base_of<Eigen::MapBase<T, Eigen::WriteAccessors>, T>;
template <typename T>
using is_eigen_dense_plain
    = all_of<negation<is_eigen_dense_map<T>>, is_template_base_of<Eigen::PlainObjectBase, T>>;
template <typename T>
using is_eigen_sparse = is_template_base_of<Eigen::SparseMatrixBase, T>;
// Test for objects inheriting from EigenBase<Derived> that aren't captured by the above.  This
// basically covers anything that can be assigned to a dense matrix but that don't have a typical
// matrix data layout that can be copied from their .data().  For example, DiagonalMatrix and
// SelfAdjointView fall into this category.
template <typename T>
using is_eigen_other
    = all_of<is_template_base_of<Eigen::EigenBase, T>,
             negation<any_of<is_eigen_dense_map<T>, is_eigen_dense_plain<T>, is_eigen_sparse<T>>>>;

// Captures numpy/eigen conformability status (returned by EigenProps::conformable()):
template <bool EigenRowMajor>
struct EigenConformable {
    bool conformable = false;
    EigenIndex rows = 0, cols = 0;
    EigenDStride stride{0, 0};    // Only valid if negativestrides is false!
    bool negativestrides = false; // If true, do not use stride!

    // NOLINTNEXTLINE(google-explicit-constructor)
    EigenConformable(bool fits = false) : conformable{fits} {}
    // Matrix type:
    EigenConformable(EigenIndex r, EigenIndex c, EigenIndex rstride, EigenIndex cstride)
        : conformable{true}, rows{r}, cols{c},
          // TODO: when Eigen bug #747 is fixed, remove the tests for non-negativity.
          // http://eigen.tuxfamily.org/bz/show_bug.cgi?id=747
          stride{EigenRowMajor ? (rstride > 0 ? rstride : 0)
                               : (cstride > 0 ? cstride : 0) /* outer stride */,
                 EigenRowMajor ? (cstride > 0 ? cstride : 0)
                               : (rstride > 0 ? rstride : 0) /* inner stride */},
          negativestrides{rstride < 0 || cstride < 0} {}
    // Vector type:
    EigenConformable(EigenIndex r, EigenIndex c, EigenIndex stride)
        : EigenConformable(r, c, r == 1 ? c * stride : stride, c == 1 ? r : r * stride) {}

    template <typename props>
    bool stride_compatible() const {
        // To have compatible strides, we need (on both dimensions) one of fully dynamic strides,
        // matching strides, or a dimension size of 1 (in which case the stride value is
        // irrelevant). Alternatively, if any dimension size is 0, the strides are not relevant
        // (and numpy ≥ 1.23 sets the strides to 0 in that case, so we need to check explicitly).
        if (negativestrides) {
            return false;
        }
        if (rows == 0 || cols == 0) {
            return true;
        }
        return (props::inner_stride == Eigen::Dynamic || props::inner_stride == stride.inner()
                || (EigenRowMajor ? cols : rows) == 1)
               && (props::outer_stride == Eigen::Dynamic || props::outer_stride == stride.outer()
                   || (EigenRowMajor ? rows : cols) == 1);
    }
    // NOLINTNEXTLINE(google-explicit-constructor)
    operator bool() const { return conformable; }
};

template <typename Type>
struct eigen_extract_stride {
    using type = Type;
};
template <typename PlainObjectType, int MapOptions, typename StrideType>
struct eigen_extract_stride<Eigen::Map<PlainObjectType, MapOptions, StrideType>> {
    using type = StrideType;
};
template <typename PlainObjectType, int Options, typename StrideType>
struct eigen_extract_stride<Eigen::Ref<PlainObjectType, Options, StrideType>> {
    using type = StrideType;
};

// Helper struct for extracting information from an Eigen type
template <typename Type_>
struct EigenProps {
    using Type = Type_;
    using Scalar = typename Type::Scalar;
    using StrideType = typename eigen_extract_stride<Type>::type;
    static constexpr EigenIndex rows = Type::RowsAtCompileTime, cols = Type::ColsAtCompileTime,
                                size = Type::SizeAtCompileTime;
    static constexpr bool row_major = Type::IsRowMajor,
                          vector
                          = Type::IsVectorAtCompileTime, // At least one dimension has fixed size 1
        fixed_rows = rows != Eigen::Dynamic, fixed_cols = cols != Eigen::Dynamic,
                          fixed = size != Eigen::Dynamic, // Fully-fixed size
        dynamic = !fixed_rows && !fixed_cols;             // Fully-dynamic size

    template <EigenIndex i, EigenIndex ifzero>
    using if_zero = std::integral_constant<EigenIndex, i == 0 ? ifzero : i>;
    static constexpr EigenIndex inner_stride
        = if_zero<StrideType::InnerStrideAtCompileTime, 1>::value,
        outer_stride = if_zero < StrideType::OuterStrideAtCompileTime,
        vector      ? size
        : row_major ? cols
                    : rows > ::value;
    static constexpr bool dynamic_stride
        = inner_stride == Eigen::Dynamic && outer_stride == Eigen::Dynamic;
    static constexpr bool requires_row_major
        = !dynamic_stride && !vector && (row_major ? inner_stride : outer_stride) == 1;
    static constexpr bool requires_col_major
        = !dynamic_stride && !vector && (row_major ? outer_stride : inner_stride) == 1;

    // Takes an input array and determines whether we can make it fit into the Eigen type.  If
    // the array is a vector, we attempt to fit it into either an Eigen 1xN or Nx1 vector
    // (preferring the latter if it will fit in either, i.e. for a fully dynamic matrix type).
    static EigenConformable<row_major> conformable(const array &a) {
        const auto dims = a.ndim();
        if (dims < 1 || dims > 2) {
            return false;
        }

        if (dims == 2) { // Matrix type: require exact match (or dynamic)

            EigenIndex np_rows = a.shape(0), np_cols = a.shape(1),
                       np_rstride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar)),
                       np_cstride = a.strides(1) / static_cast<ssize_t>(sizeof(Scalar));
            if ((PYBIND11_SILENCE_MSVC_C4127(fixed_rows) && np_rows != rows)
                || (PYBIND11_SILENCE_MSVC_C4127(fixed_cols) && np_cols != cols)) {
                return false;
            }

            return {np_rows, np_cols, np_rstride, np_cstride};
        }

        // Otherwise we're storing an n-vector.  Only one of the strides will be used, but
        // whichever is used, we want the (single) numpy stride value.
        const EigenIndex n = a.shape(0),
                         stride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar));

        if (vector) { // Eigen type is a compile-time vector
            if (PYBIND11_SILENCE_MSVC_C4127(fixed) && size != n) {
                return false; // Vector size mismatch
            }
            return {rows == 1 ? 1 : n, cols == 1 ? 1 : n, stride};
        }
        if (fixed) {
            // The type has a fixed size, but is not a vector: abort
            return false;
        }
        if (fixed_cols) {
            // Since this isn't a vector, cols must be != 1.  We allow this only if it exactly
            // equals the number of elements (rows is Dynamic, and so 1 row is allowed).
            if (cols != n) {
                return false;
            }
            return {1, n, stride};
        } // Otherwise it's either fully dynamic, or column dynamic; both become a column vector
        if (PYBIND11_SILENCE_MSVC_C4127(fixed_rows) && rows != n) {
            return false;
        }
        return {n, 1, stride};
    }

    static constexpr bool show_writeable
        = is_eigen_dense_map<Type>::value && is_eigen_mutable_map<Type>::value;
    static constexpr bool show_order = is_eigen_dense_map<Type>::value;
    static constexpr bool show_c_contiguous = show_order && requires_row_major;
    static constexpr bool show_f_contiguous
        = !show_c_contiguous && show_order && requires_col_major;

    static constexpr auto descriptor
        = const_name("numpy.ndarray[") + npy_format_descriptor<Scalar>::name + const_name("[")
          + const_name<fixed_rows>(const_name<(size_t) rows>(), const_name("m")) + const_name(", ")
          + const_name<fixed_cols>(const_name<(size_t) cols>(), const_name("n")) + const_name("]")
          +
          // For a reference type (e.g. Ref<MatrixXd>) we have other constraints that might need to
          // be satisfied: writeable=True (for a mutable reference), and, depending on the map's
          // stride options, possibly f_contiguous or c_contiguous.  We include them in the
          // descriptor output to provide some hint as to why a TypeError is occurring (otherwise
          // it can be confusing to see that a function accepts a 'numpy.ndarray[float64[3,2]]' and
          // an error message that you *gave* a numpy.ndarray of the right type and dimensions.
          const_name<show_writeable>(", flags.writeable", "")
          + const_name<show_c_contiguous>(", flags.c_contiguous", "")
          + const_name<show_f_contiguous>(", flags.f_contiguous", "") + const_name("]");
};

// Casts an Eigen type to numpy array.  If given a base, the numpy array references the src data,
// otherwise it'll make a copy.  writeable lets you turn off the writeable flag for the array.
template <typename props>
handle
eigen_array_cast(typename props::Type const &src, handle base = handle(), bool writeable = true) {
    constexpr ssize_t elem_size = sizeof(typename props::Scalar);
    array a;
    if (props::vector) {
        a = array({src.size()}, {elem_size * src.innerStride()}, src.data(), base);
    } else {
        a = array({src.rows(), src.cols()},
                  {elem_size * src.rowStride(), elem_size * src.colStride()},
                  src.data(),
                  base);
    }

    if (!writeable) {
        array_proxy(a.ptr())->flags &= ~detail::npy_api::NPY_ARRAY_WRITEABLE_;
    }

    return a.release();
}

// Takes an lvalue ref to some Eigen type and a (python) base object, creating a numpy array that
// reference the Eigen object's data with `base` as the python-registered base class (if omitted,
// the base will be set to None, and lifetime management is up to the caller).  The numpy array is
// non-writeable if the given type is const.
template <typename props, typename Type>
handle eigen_ref_array(Type &src, handle parent = none()) {
    // none here is to get past array's should-we-copy detection, which currently always
    // copies when there is no base.  Setting the base to None should be harmless.
    return eigen_array_cast<props>(src, parent, !std::is_const<Type>::value);
}

// Takes a pointer to some dense, plain Eigen type, builds a capsule around it, then returns a
// numpy array that references the encapsulated data with a python-side reference to the capsule to
// tie its destruction to that of any dependent python objects.  Const-ness is determined by
// whether or not the Type of the pointer given is const.
template <typename props, typename Type, typename = enable_if_t<is_eigen_dense_plain<Type>::value>>
handle eigen_encapsulate(Type *src) {
    capsule base(src, [](void *o) { delete static_cast<Type *>(o); });
    return eigen_ref_array<props>(*src, base);
}

// Type caster for regular, dense matrix types (e.g. MatrixXd), but not maps/refs/etc. of dense
// types.
template <typename Type>
struct type_caster<Type, enable_if_t<is_eigen_dense_plain<Type>::value>> {
    using Scalar = typename Type::Scalar;
    using props = EigenProps<Type>;

    bool load(handle src, bool convert) {
        // If we're in no-convert mode, only load if given an array of the correct type
        if (!convert && !isinstance<array_t<Scalar>>(src)) {
            return false;
        }

        // Coerce into an array, but don't do type conversion yet; the copy below handles it.
        auto buf = array::ensure(src);

        if (!buf) {
            return false;
        }

        auto dims = buf.ndim();
        if (dims < 1 || dims > 2) {
            return false;
        }

        auto fits = props::conformable(buf);
        if (!fits) {
            return false;
        }

        // Allocate the new type, then build a numpy reference into it
        value = Type(fits.rows, fits.cols);
        auto ref = reinterpret_steal<array>(eigen_ref_array<props>(value));
        if (dims == 1) {
            ref = ref.squeeze();
        } else if (ref.ndim() == 1) {
            buf = buf.squeeze();
        }

        int result = detail::npy_api::get().PyArray_CopyInto_(ref.ptr(), buf.ptr());

        if (result < 0) { // Copy failed!
            PyErr_Clear();
            return false;
        }

        return true;
    }

private:
    // Cast implementation
    template <typename CType>
    static handle cast_impl(CType *src, return_value_policy policy, handle parent) {
        switch (policy) {
            case return_value_policy::take_ownership:
            case return_value_policy::automatic:
                return eigen_encapsulate<props>(src);
            case return_value_policy::move:
                return eigen_encapsulate<props>(new CType(std::move(*src)));
            case return_value_policy::copy:
                return eigen_array_cast<props>(*src);
            case return_value_policy::reference:
            case return_value_policy::automatic_reference:
                return eigen_ref_array<props>(*src);
            case return_value_policy::reference_internal:
                return eigen_ref_array<props>(*src, parent);
            default:
                throw cast_error("unhandled return_value_policy: should not happen!");
        };
    }

public:
    // Normal returned non-reference, non-const value:
    static handle cast(Type &&src, return_value_policy /* policy */, handle parent) {
        return cast_impl(&src, return_value_policy::move, parent);
    }
    // If you return a non-reference const, we mark the numpy array readonly:
    static handle cast(const Type &&src, return_value_policy /* policy */, handle parent) {
        return cast_impl(&src, return_value_policy::move, parent);
    }
    // lvalue reference return; default (automatic) becomes copy
    static handle cast(Type &src, return_value_policy policy, handle parent) {
        if (policy == return_value_policy::automatic
            || policy == return_value_policy::automatic_reference) {
            policy = return_value_policy::copy;
        }
        return cast_impl(&src, policy, parent);
    }
    // const lvalue reference return; default (automatic) becomes copy
    static handle cast(const Type &src, return_value_policy policy, handle parent) {
        if (policy == return_value_policy::automatic
            || policy == return_value_policy::automatic_reference) {
            policy = return_value_policy::copy;
        }
        return cast(&src, policy, parent);
    }
    // non-const pointer return
    static handle cast(Type *src, return_value_policy policy, handle parent) {
        return cast_impl(src, policy, parent);
    }
    // const pointer return
    static handle cast(const Type *src, return_value_policy policy, handle parent) {
        return cast_impl(src, policy, parent);
    }

    static constexpr auto name = props::descriptor;

    // NOLINTNEXTLINE(google-explicit-constructor)
    operator Type *() { return &value; }
    // NOLINTNEXTLINE(google-explicit-constructor)
    operator Type &() { return value; }
    // NOLINTNEXTLINE(google-explicit-constructor)
    operator Type &&() && { return std::move(value); }
    template <typename T>
    using cast_op_type = movable_cast_op_type<T>;

private:
    Type value;
};

// Base class for casting reference/map/block/etc. objects back to python.
template <typename MapType>
struct eigen_map_caster {
private:
    using props = EigenProps<MapType>;

public:
    // Directly referencing a ref/map's data is a bit dangerous (whatever the map/ref points to has
    // to stay around), but we'll allow it under the assumption that you know what you're doing
    // (and have an appropriate keep_alive in place).  We return a numpy array pointing directly at
    // the ref's data (The numpy array ends up read-only if the ref was to a const matrix type.)
    // Note that this means you need to ensure you don't destroy the object in some other way (e.g.
    // with an appropriate keep_alive, or with a reference to a statically allocated matrix).
    static handle cast(const MapType &src, return_value_policy policy, handle parent) {
        switch (policy) {
            case return_value_policy::copy:
                return eigen_array_cast<props>(src);
            case return_value_policy::reference_internal:
                return eigen_array_cast<props>(src, parent, is_eigen_mutable_map<MapType>::value);
            case return_value_policy::reference:
            case return_value_policy::automatic:
            case return_value_policy::automatic_reference:
                return eigen_array_cast<props>(src, none(), is_eigen_mutable_map<MapType>::value);
            default:
                // move, take_ownership don't make any sense for a ref/map:
                pybind11_fail("Invalid return_value_policy for Eigen Map/Ref/Block type");
        }
    }

    static constexpr auto name = props::descriptor;

    // Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return
    // types but not bound arguments).  We still provide them (with an explicitly delete) so that
    // you end up here if you try anyway.
    bool load(handle, bool) = delete;
    operator MapType() = delete;
    template <typename>
    using cast_op_type = MapType;
};

// We can return any map-like object (but can only load Refs, specialized next):
template <typename Type>
struct type_caster<Type, enable_if_t<is_eigen_dense_map<Type>::value>> : eigen_map_caster<Type> {};

// Loader for Ref<...> arguments.  See the documentation for info on how to make this work without
// copying (it requires some extra effort in many cases).
template <typename PlainObjectType, typename StrideType>
struct type_caster<
    Eigen::Ref<PlainObjectType, 0, StrideType>,
    enable_if_t<is_eigen_dense_map<Eigen::Ref<PlainObjectType, 0, StrideType>>::value>>
    : public eigen_map_caster<Eigen::Ref<PlainObjectType, 0, StrideType>> {
private:
    using Type = Eigen::Ref<PlainObjectType, 0, StrideType>;
    using props = EigenProps<Type>;
    using Scalar = typename props::Scalar;
    using MapType = Eigen::Map<PlainObjectType, 0, StrideType>;
    using Array
        = array_t<Scalar,
                  array::forcecast
                      | ((props::row_major ? props::inner_stride : props::outer_stride) == 1
                             ? array::c_style
                         : (props::row_major ? props::outer_stride : props::inner_stride) == 1
                             ? array::f_style
                             : 0)>;
    static constexpr bool need_writeable = is_eigen_mutable_map<Type>::value;
    // Delay construction (these have no default constructor)
    std::unique_ptr<MapType> map;
    std::unique_ptr<Type> ref;
    // Our array.  When possible, this is just a numpy array pointing to the source data, but
    // sometimes we can't avoid copying (e.g. input is not a numpy array at all, has an
    // incompatible layout, or is an array of a type that needs to be converted).  Using a numpy
    // temporary (rather than an Eigen temporary) saves an extra copy when we need both type
    // conversion and storage order conversion.  (Note that we refuse to use this temporary copy
    // when loading an argument for a Ref<M> with M non-const, i.e. a read-write reference).
    Array copy_or_ref;

public:
    bool load(handle src, bool convert) {
        // First check whether what we have is already an array of the right type.  If not, we
        // can't avoid a copy (because the copy is also going to do type conversion).
        bool need_copy = !isinstance<Array>(src);

        EigenConformable<props::row_major> fits;
        if (!need_copy) {
            // We don't need a converting copy, but we also need to check whether the strides are
            // compatible with the Ref's stride requirements
            auto aref = reinterpret_borrow<Array>(src);

            if (aref && (!need_writeable || aref.writeable())) {
                fits = props::conformable(aref);
                if (!fits) {
                    return false; // Incompatible dimensions
                }
                if (!fits.template stride_compatible<props>()) {
                    need_copy = true;
                } else {
                    copy_or_ref = std::move(aref);
                }
            } else {
                need_copy = true;
            }
        }

        if (need_copy) {
            // We need to copy: If we need a mutable reference, or we're not supposed to convert
            // (either because we're in the no-convert overload pass, or because we're explicitly
            // instructed not to copy (via `py::arg().noconvert()`) we have to fail loading.
            if (!convert || need_writeable) {
                return false;
            }

            Array copy = Array::ensure(src);
            if (!copy) {
                return false;
            }
            fits = props::conformable(copy);
            if (!fits || !fits.template stride_compatible<props>()) {
                return false;
            }
            copy_or_ref = std::move(copy);
            loader_life_support::add_patient(copy_or_ref);
        }

        ref.reset();
        map.reset(new MapType(data(copy_or_ref),
                              fits.rows,
                              fits.cols,
                              make_stride(fits.stride.outer(), fits.stride.inner())));
        ref.reset(new Type(*map));

        return true;
    }

    // NOLINTNEXTLINE(google-explicit-constructor)
    operator Type *() { return ref.get(); }
    // NOLINTNEXTLINE(google-explicit-constructor)
    operator Type &() { return *ref; }
    template <typename _T>
    using cast_op_type = pybind11::detail::cast_op_type<_T>;

private:
    template <typename T = Type, enable_if_t<is_eigen_mutable_map<T>::value, int> = 0>
    Scalar *data(Array &a) {
        return a.mutable_data();
    }

    template <typename T = Type, enable_if_t<!is_eigen_mutable_map<T>::value, int> = 0>
    const Scalar *data(Array &a) {
        return a.data();
    }

    // Attempt to figure out a constructor of `Stride` that will work.
    // If both strides are fixed, use a default constructor:
    template <typename S>
    using stride_ctor_default = bool_constant<S::InnerStrideAtCompileTime != Eigen::Dynamic
                                              && S::OuterStrideAtCompileTime != Eigen::Dynamic
                                              && std::is_default_constructible<S>::value>;
    // Otherwise, if there is a two-index constructor, assume it is (outer,inner) like
    // Eigen::Stride, and use it:
    template <typename S>
    using stride_ctor_dual
        = bool_constant<!stride_ctor_default<S>::value
                        && std::is_constructible<S, EigenIndex, EigenIndex>::value>;
    // Otherwise, if there is a one-index constructor, and just one of the strides is dynamic, use
    // it (passing whichever stride is dynamic).
    template <typename S>
    using stride_ctor_outer
        = bool_constant<!any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value
                        && S::OuterStrideAtCompileTime == Eigen::Dynamic
                        && S::InnerStrideAtCompileTime != Eigen::Dynamic
                        && std::is_constructible<S, EigenIndex>::value>;
    template <typename S>
    using stride_ctor_inner
        = bool_constant<!any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value
                        && S::InnerStrideAtCompileTime == Eigen::Dynamic
                        && S::OuterStrideAtCompileTime != Eigen::Dynamic
                        && std::is_constructible<S, EigenIndex>::value>;

    template <typename S = StrideType, enable_if_t<stride_ctor_default<S>::value, int> = 0>
    static S make_stride(EigenIndex, EigenIndex) {
        return S();
    }
    template <typename S = StrideType, enable_if_t<stride_ctor_dual<S>::value, int> = 0>
    static S make_stride(EigenIndex outer, EigenIndex inner) {
        return S(outer, inner);
    }
    template <typename S = StrideType, enable_if_t<stride_ctor_outer<S>::value, int> = 0>
    static S make_stride(EigenIndex outer, EigenIndex) {
        return S(outer);
    }
    template <typename S = StrideType, enable_if_t<stride_ctor_inner<S>::value, int> = 0>
    static S make_stride(EigenIndex, EigenIndex inner) {
        return S(inner);
    }
};

// type_caster for special matrix types (e.g. DiagonalMatrix), which are EigenBase, but not
// EigenDense (i.e. they don't have a data(), at least not with the usual matrix layout).
// load() is not supported, but we can cast them into the python domain by first copying to a
// regular Eigen::Matrix, then casting that.
template <typename Type>
struct type_caster<Type, enable_if_t<is_eigen_other<Type>::value>> {
protected:
    using Matrix
        = Eigen::Matrix<typename Type::Scalar, Type::RowsAtCompileTime, Type::ColsAtCompileTime>;
    using props = EigenProps<Matrix>;

public:
    static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
        handle h = eigen_encapsulate<props>(new Matrix(src));
        return h;
    }
    static handle cast(const Type *src, return_value_policy policy, handle parent) {
        return cast(*src, policy, parent);
    }

    static constexpr auto name = props::descriptor;

    // Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return
    // types but not bound arguments).  We still provide them (with an explicitly delete) so that
    // you end up here if you try anyway.
    bool load(handle, bool) = delete;
    operator Type() = delete;
    template <typename>
    using cast_op_type = Type;
};

template <typename Type>
struct type_caster<Type, enable_if_t<is_eigen_sparse<Type>::value>> {
    using Scalar = typename Type::Scalar;
    using StorageIndex = remove_reference_t<decltype(*std::declval<Type>().outerIndexPtr())>;
    using Index = typename Type::Index;
    static constexpr bool rowMajor = Type::IsRowMajor;

    bool load(handle src, bool) {
        if (!src) {
            return false;
        }

        auto obj = reinterpret_borrow<object>(src);
        object sparse_module = module_::import("scipy.sparse");
        object matrix_type = sparse_module.attr(rowMajor ? "csr_matrix" : "csc_matrix");

        if (!type::handle_of(obj).is(matrix_type)) {
            try {
                obj = matrix_type(obj);
            } catch (const error_already_set &) {
                return false;
            }
        }

        auto values = array_t<Scalar>((object) obj.attr("data"));
        auto innerIndices = array_t<StorageIndex>((object) obj.attr("indices"));
        auto outerIndices = array_t<StorageIndex>((object) obj.attr("indptr"));
        auto shape = pybind11::tuple((pybind11::object) obj.attr("shape"));
        auto nnz = obj.attr("nnz").cast<Index>();

        if (!values || !innerIndices || !outerIndices) {
            return false;
        }

        value = EigenMapSparseMatrix<Scalar,
                                     Type::Flags &(Eigen::RowMajor | Eigen::ColMajor),
                                     StorageIndex>(shape[0].cast<Index>(),
                                                   shape[1].cast<Index>(),
                                                   std::move(nnz),
                                                   outerIndices.mutable_data(),
                                                   innerIndices.mutable_data(),
                                                   values.mutable_data());

        return true;
    }

    static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
        const_cast<Type &>(src).makeCompressed();

        object matrix_type
            = module_::import("scipy.sparse").attr(rowMajor ? "csr_matrix" : "csc_matrix");

        array data(src.nonZeros(), src.valuePtr());
        array outerIndices((rowMajor ? src.rows() : src.cols()) + 1, src.outerIndexPtr());
        array innerIndices(src.nonZeros(), src.innerIndexPtr());

        return matrix_type(pybind11::make_tuple(
                               std::move(data), std::move(innerIndices), std::move(outerIndices)),
                           pybind11::make_tuple(src.rows(), src.cols()))
            .release();
    }

    PYBIND11_TYPE_CASTER(Type,
                         const_name<(Type::IsRowMajor) != 0>("scipy.sparse.csr_matrix[",
                                                             "scipy.sparse.csc_matrix[")
                             + npy_format_descriptor<Scalar>::name + const_name("]"));
};

PYBIND11_NAMESPACE_END(detail)
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)