|
#pragma once |
|
#include <ATen/cuda/cub.h> |
|
|
|
#include <cstddef> |
|
#include <type_traits> |
|
#include <iterator> |
|
#include <limits> |
|
|
|
#include <c10/util/C++17.h> |
|
|
|
#include <ATen/cuda/cub_definitions.cuh> |
|
|
|
#if USE_GLOBAL_CUB_WRAPPED_NAMESPACE() |
|
|
|
#include <cub/cub.cuh> |
|
|
|
#else |
|
|
|
|
|
|
|
#undef CUB_NS_POSTFIX |
|
#undef CUB_NS_PREFIX |
|
#undef CUB_NS_QUALIFIER |
|
#define CUB_NS_PREFIX namespace at_cuda_detail { |
|
#define CUB_NS_POSTFIX } |
|
#define CUB_NS_QUALIFIER ::at_cuda_detail::cub |
|
#include <cub/cub.cuh> |
|
#undef CUB_NS_POSTFIX |
|
#undef CUB_NS_PREFIX |
|
#undef CUB_NS_QUALIFIER |
|
|
|
#endif |
|
|
|
#include <ATen/cuda/Exceptions.h> |
|
#include <c10/cuda/CUDACachingAllocator.h> |
|
#include <c10/cuda/CUDAStream.h> |
|
|
|
|
|
#define CUB_WRAPPER(func, ...) do { \ |
|
size_t temp_storage_bytes = 0; \ |
|
func(nullptr, temp_storage_bytes, __VA_ARGS__); \ |
|
auto& caching_allocator = *::c10::cuda::CUDACachingAllocator::get(); \ |
|
auto temp_storage = caching_allocator.allocate(temp_storage_bytes); \ |
|
func(temp_storage.get(), temp_storage_bytes, __VA_ARGS__); \ |
|
AT_CUDA_CHECK(cudaGetLastError()); \ |
|
} while (false) |
|
|
|
#ifdef USE_ROCM |
|
#define NO_ROCM(x) |
|
#define ROCM_HIPCUB(x) ::hipcub |
|
#else |
|
#define NO_ROCM(x) x |
|
#define ROCM_HIPCUB(x) x |
|
#endif |
|
|
|
#if (!defined(USE_ROCM) && !CUB_SUPPORTS_NV_BFLOAT16()) || \ |
|
(defined(USE_ROCM) && ROCM_VERSION >= 40500) |
|
|
|
#if !defined(USE_ROCM) |
|
namespace at_cuda_detail { |
|
#endif |
|
|
|
|
|
|
|
template <> |
|
struct ROCM_HIPCUB(cub)::FpLimits<c10::BFloat16> |
|
{ |
|
static __host__ __device__ __forceinline__ c10::BFloat16 Max() { |
|
unsigned short max_word = 0x7F7F; |
|
return reinterpret_cast<c10::BFloat16&>(max_word); |
|
} |
|
|
|
static __host__ __device__ __forceinline__ c10::BFloat16 Lowest() { |
|
unsigned short lowest_word = 0xFF7F; |
|
return reinterpret_cast<c10::BFloat16&>(lowest_word); |
|
} |
|
}; |
|
|
|
template <> |
|
struct ROCM_HIPCUB(cub)::NumericTraits<c10::BFloat16>: |
|
ROCM_HIPCUB(cub)::BaseTraits<ROCM_HIPCUB(cub)::FLOATING_POINT, true, false, unsigned short, c10::BFloat16> {}; |
|
|
|
#if !defined(USE_ROCM) |
|
} |
|
#endif |
|
|
|
#endif |
|
|
|
#if !defined(USE_ROCM) |
|
namespace at { namespace native { |
|
namespace cub = ::at_cuda_detail::cub; |
|
}} |
|
#endif |
|
|
|
namespace at { |
|
namespace cuda { |
|
namespace cub { |
|
|
|
namespace detail { |
|
|
|
template<typename T> |
|
struct cuda_type { |
|
using type = T; |
|
}; |
|
template<> |
|
struct cuda_type<c10::Half> { |
|
using type = __half; |
|
}; |
|
|
|
#if !defined(USE_ROCM) && CUB_SUPPORTS_NV_BFLOAT16() |
|
|
|
template<> |
|
struct cuda_type<c10::BFloat16> { |
|
using type = __nv_bfloat16; |
|
}; |
|
|
|
#elif (defined(USE_ROCM) && ROCM_VERSION >= 40500) |
|
|
|
template<> |
|
struct cuda_type<c10::BFloat16> { |
|
using type = hip_bfloat16; |
|
}; |
|
|
|
#endif |
|
|
|
} |
|
|
|
template<typename key_t, typename value_t, typename OffsetIteratorT> |
|
inline void segmented_sort_pairs( |
|
const key_t *keys_in, key_t *keys_out, |
|
const value_t *values_in, value_t *values_out, |
|
int64_t num_elements, int64_t num_segments, |
|
OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, |
|
bool descending=false, int64_t begin_bit=0, int64_t end_bit=sizeof(key_t)*8 |
|
) { |
|
TORCH_CHECK(num_elements <= std::numeric_limits<int>::max(), |
|
"cub sort does not support sorting more than INT_MAX elements"); |
|
TORCH_CHECK(num_segments <= std::numeric_limits<int>::max(), |
|
"cub sort does not support sorting more than INT_MAX elements"); |
|
using key_t_ = typename detail::cuda_type<key_t>::type; |
|
|
|
auto allocator = c10::cuda::CUDACachingAllocator::get(); |
|
c10::DataPtr keys_out_owner; |
|
|
|
if (keys_out == nullptr) { |
|
keys_out_owner = allocator->allocate(num_elements * sizeof(key_t)); |
|
keys_out = reinterpret_cast<key_t *>(keys_out_owner.get()); |
|
} |
|
|
|
const key_t_ *keys_in_ = reinterpret_cast<const key_t_*>(keys_in); |
|
key_t_ *keys_out_ = reinterpret_cast<key_t_*>(keys_out); |
|
|
|
if (descending) { |
|
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceSegmentedRadixSort::SortPairsDescending, |
|
keys_in_, keys_out_, values_in, values_out, |
|
num_elements, num_segments, begin_offsets, end_offsets, |
|
begin_bit, end_bit, c10::cuda::getCurrentCUDAStream()); |
|
} else { |
|
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceSegmentedRadixSort::SortPairs, |
|
keys_in_, keys_out_, values_in, values_out, |
|
num_elements, num_segments, begin_offsets, end_offsets, |
|
begin_bit, end_bit, c10::cuda::getCurrentCUDAStream()); |
|
} |
|
} |
|
|
|
#if CUB_SUPPORTS_UNIQUE_BY_KEY() |
|
template <typename KeysInputIteratorT, typename ValuesInputIteratorT, typename KeysOutputIteratorT, typename ValuesOutputIteratorT, typename NumSelectedIteratorT> |
|
inline void unique_by_key( |
|
KeysInputIteratorT keys_in, ValuesInputIteratorT values_in, |
|
KeysOutputIteratorT keys_out, ValuesOutputIteratorT values_out, |
|
NumSelectedIteratorT num_selected, int64_t num_input_items) |
|
{ |
|
|
|
constexpr bool null_keys_out = std::is_same<KeysOutputIteratorT, std::nullptr_t>::value; |
|
using KeyT = typename std::iterator_traits<KeysInputIteratorT>::value_type; |
|
using RealKeysOutputIteratorT = typename std::conditional<null_keys_out, KeyT *, KeysOutputIteratorT>::type; |
|
RealKeysOutputIteratorT keys_out_; |
|
auto allocator = c10::cuda::CUDACachingAllocator::get(); |
|
c10::DataPtr keys_out_owner; |
|
c10::guts::if_constexpr<null_keys_out>( |
|
[&](auto _) { |
|
keys_out_owner = allocator->allocate(num_input_items * sizeof(KeyT)); |
|
keys_out_ = static_cast<KeyT *>(keys_out_owner.get()); |
|
}, |
|
[&](auto _) { |
|
keys_out_ = keys_out; |
|
} |
|
); |
|
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceSelect::UniqueByKey, |
|
keys_in, values_in, keys_out_, values_out, num_selected, num_input_items, c10::cuda::getCurrentCUDAStream()); |
|
} |
|
#endif |
|
|
|
namespace impl { |
|
|
|
template<typename InputIteratorT1, typename InputIteratorT2, typename OutputIteratorT, class ScanOpT> |
|
C10_LAUNCH_BOUNDS_1(1) |
|
__global__ void transform_vals(InputIteratorT1 a, InputIteratorT2 b, OutputIteratorT out, ScanOpT scan_op){ |
|
|
|
using acc_t = typename std::iterator_traits<OutputIteratorT>::value_type; |
|
*out = scan_op(static_cast<acc_t>(*a), static_cast<acc_t>(*b)); |
|
} |
|
|
|
#if !CUB_SUPPORTS_FUTURE_VALUE() |
|
template<typename ValueT, typename InputIteratorT> |
|
struct chained_iterator { |
|
using iterator_category = std::random_access_iterator_tag; |
|
using difference_type = std::ptrdiff_t; |
|
using value_type = ValueT; |
|
using pointer = ValueT*; |
|
using reference = ValueT&; |
|
|
|
InputIteratorT iter; |
|
ValueT *first; |
|
difference_type offset = 0; |
|
|
|
__device__ ValueT operator[](difference_type i) { |
|
i += offset; |
|
if (i == 0) { |
|
return *first; |
|
} else { |
|
return ValueT(iter[i - 1]); |
|
} |
|
} |
|
__device__ chained_iterator operator+(difference_type i) { |
|
return chained_iterator{iter, first, i}; |
|
} |
|
__device__ ValueT operator*() { |
|
return (*this)[0]; |
|
} |
|
}; |
|
#endif |
|
|
|
|
|
|
|
constexpr int max_cub_size = std::numeric_limits<int>::max() / 2 + 1; |
|
} |
|
|
|
|
|
|
|
|
|
template<typename InputIteratorT, typename OutputIteratorT, typename ScanOpT, int max_cub_size=impl::max_cub_size> |
|
inline void inclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT scan_op, int64_t num_items) { |
|
#if defined(USE_ROCM) && (ROCM_VERSION >= 50000) |
|
|
|
CUB_WRAPPER(NO_ROCM(detail)::hipcub::DeviceScan::InclusiveScan, |
|
input, |
|
output, |
|
scan_op, |
|
num_items, |
|
at::cuda::getCurrentCUDAStream()); |
|
C10_HIP_KERNEL_LAUNCH_CHECK(); |
|
#else |
|
|
|
|
|
|
|
int size_cub = std::min<int64_t>(num_items, max_cub_size); |
|
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan, |
|
input, |
|
output, |
|
scan_op, |
|
size_cub, |
|
at::cuda::getCurrentCUDAStream()); |
|
C10_CUDA_KERNEL_LAUNCH_CHECK(); |
|
using input_t = typename std::iterator_traits<InputIteratorT>::value_type; |
|
for (int64_t i = max_cub_size; i < num_items; i += max_cub_size) { |
|
auto allocator = c10::cuda::CUDACachingAllocator::get(); |
|
c10::DataPtr first_elem = allocator->allocate(sizeof(input_t)); |
|
auto first_elem_ptr = reinterpret_cast<input_t *>(first_elem.get()); |
|
|
|
size_cub = std::min<int64_t>(num_items - i, max_cub_size); |
|
impl::transform_vals<<<1, 1, 0, at::cuda::getCurrentCUDAStream()>>>( |
|
output + i - 1, |
|
input + i, |
|
first_elem_ptr, |
|
scan_op); |
|
C10_CUDA_KERNEL_LAUNCH_CHECK(); |
|
#if !CUB_SUPPORTS_FUTURE_VALUE() |
|
using ArgIndexInputIterator = NO_ROCM(at_cuda_detail)::cub::ArgIndexInputIterator<InputIteratorT>; |
|
using tuple = typename ArgIndexInputIterator::value_type; |
|
auto input_iter_transform = [=] __device__ (const tuple &x)->input_t { |
|
if (x.key == 0) { |
|
return *first_elem_ptr; |
|
} else { |
|
return x.value; |
|
} |
|
}; |
|
auto input_ = NO_ROCM(at_cuda_detail)::cub::TransformInputIterator<input_t, decltype(input_iter_transform), ArgIndexInputIterator>( |
|
ArgIndexInputIterator(input + i), input_iter_transform); |
|
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan, |
|
input_, |
|
output + i, |
|
scan_op, |
|
size_cub, |
|
at::cuda::getCurrentCUDAStream()); |
|
#else |
|
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan, |
|
input + i + 1, |
|
output + i, |
|
scan_op, |
|
::at_cuda_detail::cub::FutureValue<input_t>(first_elem_ptr), |
|
size_cub, |
|
at::cuda::getCurrentCUDAStream()); |
|
#endif |
|
} |
|
#endif |
|
} |
|
|
|
template<typename InputIteratorT, typename OutputIteratorT, typename ScanOpT, typename InitValueT, int max_cub_size=impl::max_cub_size> |
|
inline void exclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT scan_op, InitValueT init_value, int64_t num_items) { |
|
#if defined(USE_ROCM) && (ROCM_VERSION >= 50000) |
|
|
|
CUB_WRAPPER(NO_ROCM(detail)::hipcub::DeviceScan::ExclusiveScan, |
|
input, |
|
output, |
|
scan_op, |
|
init_value, |
|
num_items, |
|
at::cuda::getCurrentCUDAStream()); |
|
C10_HIP_KERNEL_LAUNCH_CHECK(); |
|
#else |
|
|
|
|
|
|
|
int size_cub = std::min<int64_t>(num_items, max_cub_size); |
|
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan, |
|
input, |
|
output, |
|
scan_op, |
|
init_value, |
|
size_cub, |
|
at::cuda::getCurrentCUDAStream()); |
|
C10_CUDA_KERNEL_LAUNCH_CHECK(); |
|
for (int64_t i = max_cub_size; i < num_items; i += max_cub_size) { |
|
auto allocator = c10::cuda::CUDACachingAllocator::get(); |
|
c10::DataPtr first_elem = allocator->allocate(sizeof(InitValueT)); |
|
auto first_elem_ptr = reinterpret_cast<InitValueT *>(first_elem.get()); |
|
|
|
size_cub = std::min<int64_t>(num_items - i, max_cub_size); |
|
impl::transform_vals<<<1, 1, 0, at::cuda::getCurrentCUDAStream()>>>( |
|
output + i - 1, |
|
input + i - 1, |
|
first_elem_ptr, |
|
scan_op); |
|
C10_CUDA_KERNEL_LAUNCH_CHECK(); |
|
#if !CUB_SUPPORTS_FUTURE_VALUE() |
|
auto input_ = impl::chained_iterator<InitValueT, InputIteratorT>{ |
|
input + i, first_elem_ptr}; |
|
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan, |
|
input_, |
|
output + i, |
|
scan_op, |
|
size_cub, |
|
at::cuda::getCurrentCUDAStream()); |
|
#else |
|
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan, |
|
input + i, |
|
output + i, |
|
scan_op, |
|
::at_cuda_detail::cub::FutureValue<InitValueT>(first_elem_ptr), |
|
size_cub, |
|
at::cuda::getCurrentCUDAStream()); |
|
#endif |
|
} |
|
#endif |
|
} |
|
|
|
#if CUB_SUPPORTS_SCAN_BY_KEY() |
|
|
|
template <typename KeysInputIteratorT, typename ValuesInputIteratorT, typename ValuesOutputIteratorT> |
|
inline void inclusive_sum_by_key(KeysInputIteratorT keys, ValuesInputIteratorT input, ValuesOutputIteratorT output, int64_t num_items) { |
|
TORCH_CHECK(num_items <= std::numeric_limits<int>::max(), |
|
"cub InclusiveSumByKey does not support more than INT_MAX elements"); |
|
CUB_WRAPPER(at_cuda_detail::cub::DeviceScan::InclusiveSumByKey, |
|
keys, input, output, num_items, at_cuda_detail::cub::Equality(), at::cuda::getCurrentCUDAStream()); |
|
} |
|
|
|
template <typename KeysInputIteratorT, typename ValuesInputIteratorT, typename ValuesOutputIteratorT, typename ScanOpT> |
|
inline void inclusive_scan_by_key(KeysInputIteratorT keys, ValuesInputIteratorT input, ValuesOutputIteratorT output, ScanOpT scan_op, int64_t num_items) { |
|
TORCH_CHECK(num_items <= std::numeric_limits<int>::max(), |
|
"cub InclusiveSumByKey does not support more than INT_MAX elements"); |
|
CUB_WRAPPER(at_cuda_detail::cub::DeviceScan::InclusiveScanByKey, |
|
keys, input, output, scan_op, num_items, at_cuda_detail::cub::Equality(), at::cuda::getCurrentCUDAStream()); |
|
} |
|
|
|
#endif |
|
|
|
template <typename InputIteratorT, typename OutputIteratorT, typename NumSelectedIteratorT> |
|
void unique(InputIteratorT input, OutputIteratorT output, |
|
NumSelectedIteratorT num_selected_out, int64_t num_items) { |
|
TORCH_CHECK(num_items <= std::numeric_limits<int>::max(), |
|
"cub unique does not support more than INT_MAX elements"); |
|
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceSelect::Unique, |
|
input, output, num_selected_out, num_items, at::cuda::getCurrentCUDAStream()); |
|
} |
|
|
|
template <typename InputIteratorT, typename OutputIteratorT, typename CountsOutputIteratorT, |
|
typename LengthOutputIteratorT> |
|
void run_length_encode(InputIteratorT input, OutputIteratorT output, CountsOutputIteratorT counts_out, |
|
LengthOutputIteratorT length_out, int64_t num_items) { |
|
TORCH_CHECK(num_items <= std::numeric_limits<int>::max(), |
|
"cub run_length_encode does not support more than INT_MAX elements"); |
|
CUB_WRAPPER( |
|
NO_ROCM(at_cuda_detail)::cub::DeviceRunLengthEncode::Encode, |
|
input, output, counts_out, length_out, num_items, |
|
at::cuda::getCurrentCUDAStream()); |
|
} |
|
|
|
template <typename InputIteratorT, typename OutputIteratorT, typename ReductionOpT, typename T> |
|
void reduce(InputIteratorT input, OutputIteratorT output, int64_t num_items, ReductionOpT op, T init) { |
|
TORCH_CHECK(num_items <= std::numeric_limits<int>::max(), |
|
"cub reduce does not support more than INT_MAX elements"); |
|
CUB_WRAPPER( |
|
NO_ROCM(at_cuda_detail)::cub::DeviceReduce::Reduce, |
|
input, output, num_items, op, init, |
|
at::cuda::getCurrentCUDAStream()); |
|
|
|
} |
|
|
|
}}} |
|
|