// Copyright (c) Facebook, Inc. and its affiliates. | |
// All rights reserved. | |
// | |
// This source code is licensed under the BSD-style license found in the | |
// LICENSE file in the root directory of this source tree. | |
// NOTE: [vmap plumbing] | |
// | |
// Here's how "batching rules" work. | |
// - we register kernels to the Batched key | |
// - these kernels have the same signatures as the original operators. | |
// For example, at::sin(Tensor self) accepts a Tensor, and the batched kernel | |
// must also accept a Tensor | |
// - However, it is more natural for users to write a batching rule like the | |
// following: sin_batch_rule(Tensor self, optional<int> self_bdim) | |
// - There is some codegenerated layer (the "plumbing") that wraps the user | |
// defined batching rule (e.g. sin_batch_rule) in a kernel that can be | |
// registered to the Batched key. | |
// | |
// The plumbing is responsible for wrapping a batching rule into a form that may | |
// be registered as the kernel for the batched key. | |
namespace at { namespace functorch { | |
// Create a BatchedTensor given a tensor, bdim, and level | |
TORCH_API Tensor makeBatched(const Tensor& tensor, optional<int64_t> bdim, int64_t level); | |
// Given a Tensor that may or may not be a BatchedTensor, unwrap it. | |
// If `tensor` is not a BatchedTensor, or is a BatchedTensor but the level | |
// doesn't match, then this returns (tensor, nullopt). | |
// Otherwise, it returns (unwrap(tensor), bdim). | |
TORCH_API std::tuple<Tensor, optional<int64_t>> unwrapTensorAtLevel(const Tensor& tensor, int64_t level); | |
// Creates a vector of BatchedTensor | |
TORCH_API std::vector<Tensor> makeBatchedVector(const std::vector<Tensor>& tensors, optional<int64_t> bdim, int64_t level); | |
// Returns True if ANY tensor in tensors is batched at level | |
TORCH_API bool isBatchedAtLevel(ITensorListRef tensors, int64_t level); | |
TORCH_API bool isBatchedAtLevel(const c10::List<c10::optional<Tensor>> maybe_tensors, int64_t level); | |
TORCH_API bool isBatchedAtLevel(const Tensor& tensor, int64_t level); | |
TORCH_API bool isBatchedAtLevel(const c10::optional<Tensor>& maybe_tensor, int64_t level); | |
// Convenience helper. Returns true if any tensor is batched at level | |
TORCH_API bool areAnyBatchedAtLevel(ArrayRef<optional<Tensor>> maybe_tensors, int64_t level); | |
inline bool ivalueParticipatesInCurrentLevel(const IValue& ivalue) { | |
if (ivalue.isTensor()) { | |
auto maybe_level = maybeCurrentDynamicLayer(); | |
TORCH_INTERNAL_ASSERT(maybe_level.has_value()); | |
auto current_level = maybe_level->layerId(); | |
return isBatchedAtLevel(ivalue.toTensor(), current_level); | |
} | |
// TODO: should really check this | |
return false; | |
} | |
}} | |