AbeShinzo0708's picture
Upload 2229 files
7e50900
raw
history blame
14.4 kB
#pragma once
#ifndef C10_UTIL_CPP17_H_
#define C10_UTIL_CPP17_H_
#include <c10/macros/Macros.h>
#include <cstdlib>
#include <functional>
#include <memory>
#include <sstream>
#include <string>
#include <type_traits>
#include <utility>
#if !defined(__clang__) && !defined(_MSC_VER) && defined(__GNUC__) && \
__GNUC__ < 5
#error \
"You're trying to build PyTorch with a too old version of GCC. We need GCC 5 or later."
#endif
#if defined(__clang__) && __clang_major__ < 4
#error \
"You're trying to build PyTorch with a too old version of Clang. We need Clang 4 or later."
#endif
#if (defined(_MSC_VER) && (!defined(_MSVC_LANG) || _MSVC_LANG < 201402L)) || \
(!defined(_MSC_VER) && __cplusplus < 201402L)
#error You need C++14 to compile PyTorch
#endif
#if defined(_WIN32) && (defined(min) || defined(max))
#error Macro clash with min and max -- define NOMINMAX when compiling your program on Windows
#endif
/*
* This header adds some polyfills with C++17 functionality
*/
namespace c10 {
// in c++17 std::result_of has been superceded by std::invoke_result. Since
// c++20, std::result_of is removed.
template <typename F, typename... args>
#if defined(__cpp_lib_is_invocable) && __cpp_lib_is_invocable >= 201703L
using invoke_result = typename std::invoke_result<F, args...>;
#else
using invoke_result = typename std::result_of<F && (args && ...)>;
#endif
template <typename F, typename... args>
using invoke_result_t = typename invoke_result<F, args...>::type;
namespace guts {
template <typename Base, typename Child, typename... Args>
typename std::enable_if<
!std::is_array<Base>::value && !std::is_array<Child>::value &&
std::is_base_of<Base, Child>::value,
std::unique_ptr<Base>>::type
make_unique_base(Args&&... args) {
return std::unique_ptr<Base>(new Child(std::forward<Args>(args)...));
}
#if defined(__cpp_lib_logical_traits) && !(defined(_MSC_VER) && _MSC_VER < 1920)
template <class... B>
using conjunction = std::conjunction<B...>;
template <class... B>
using disjunction = std::disjunction<B...>;
template <bool B>
using bool_constant = std::bool_constant<B>;
template <class B>
using negation = std::negation<B>;
#else
// Implementation taken from http://en.cppreference.com/w/cpp/types/conjunction
template <class...>
struct conjunction : std::true_type {};
template <class B1>
struct conjunction<B1> : B1 {};
template <class B1, class... Bn>
struct conjunction<B1, Bn...>
: std::conditional_t<bool(B1::value), conjunction<Bn...>, B1> {};
// Implementation taken from http://en.cppreference.com/w/cpp/types/disjunction
template <class...>
struct disjunction : std::false_type {};
template <class B1>
struct disjunction<B1> : B1 {};
template <class B1, class... Bn>
struct disjunction<B1, Bn...>
: std::conditional_t<bool(B1::value), B1, disjunction<Bn...>> {};
// Implementation taken from
// http://en.cppreference.com/w/cpp/types/integral_constant
template <bool B>
using bool_constant = std::integral_constant<bool, B>;
// Implementation taken from http://en.cppreference.com/w/cpp/types/negation
template <class B>
struct negation : bool_constant<!bool(B::value)> {};
#endif
#ifdef __cpp_lib_void_t
template <class T>
using void_t = std::void_t<T>;
#else
// Implementation taken from http://en.cppreference.com/w/cpp/types/void_t
// (it takes CWG1558 into account and also works for older compilers)
template <typename... Ts>
struct make_void {
typedef void type;
};
template <typename... Ts>
using void_t = typename make_void<Ts...>::type;
#endif
#if defined(USE_ROCM)
// rocm doesn't like the C10_HOST_DEVICE
#define CUDA_HOST_DEVICE
#else
#define CUDA_HOST_DEVICE C10_HOST_DEVICE
#endif
#ifdef __cpp_lib_apply
template <class F, class Tuple>
CUDA_HOST_DEVICE inline constexpr decltype(auto) apply(F&& f, Tuple&& t) {
return std::apply(std::forward<F>(f), std::forward<Tuple>(t));
}
#else
// Implementation from http://en.cppreference.com/w/cpp/utility/apply (but
// modified)
// TODO This is an incomplete implementation of std::apply, not working for
// member functions.
namespace detail {
template <class F, class Tuple, std::size_t... INDEX>
#if defined(_MSC_VER)
// MSVC has a problem with the decltype() return type, but it also doesn't need
// it
C10_HOST_DEVICE constexpr auto apply_impl(
F&& f,
Tuple&& t,
std::index_sequence<INDEX...>)
#else
// GCC/Clang need the decltype() return type
CUDA_HOST_DEVICE constexpr decltype(auto) apply_impl(
F&& f,
Tuple&& t,
std::index_sequence<INDEX...>)
#endif
{
return std::forward<F>(f)(std::get<INDEX>(std::forward<Tuple>(t))...);
}
} // namespace detail
template <class F, class Tuple>
CUDA_HOST_DEVICE constexpr decltype(auto) apply(F&& f, Tuple&& t) {
return detail::apply_impl(
std::forward<F>(f),
std::forward<Tuple>(t),
std::make_index_sequence<
std::tuple_size<std::remove_reference_t<Tuple>>::value>{});
}
#endif
#undef CUDA_HOST_DEVICE
template <typename Functor, typename... Args>
typename std::enable_if<
std::is_member_pointer<typename std::decay<Functor>::type>::value,
typename c10::invoke_result_t<Functor, Args...>>::type
invoke(Functor&& f, Args&&... args) {
return std::mem_fn(std::forward<Functor>(f))(std::forward<Args>(args)...);
}
template <typename Functor, typename... Args>
typename std::enable_if<
!std::is_member_pointer<typename std::decay<Functor>::type>::value,
typename c10::invoke_result_t<Functor, Args...>>::type
invoke(Functor&& f, Args&&... args) {
return std::forward<Functor>(f)(std::forward<Args>(args)...);
}
namespace detail {
struct _identity final {
template <class T>
using type_identity = T;
template <class T>
decltype(auto) operator()(T&& arg) {
return std::forward<T>(arg);
}
};
template <class Func, class Enable = void>
struct function_takes_identity_argument : std::false_type {};
#if defined(_MSC_VER)
// For some weird reason, MSVC shows a compiler error when using guts::void_t
// instead of std::void_t. But we're only building on MSVC versions that have
// std::void_t, so let's just use that one.
template <class Func>
struct function_takes_identity_argument<
Func,
std::void_t<decltype(std::declval<Func>()(_identity()))>> : std::true_type {
};
#else
template <class Func>
struct function_takes_identity_argument<
Func,
void_t<decltype(std::declval<Func>()(_identity()))>> : std::true_type {};
#endif
template <bool Condition>
struct _if_constexpr;
template <>
struct _if_constexpr<true> final {
template <
class ThenCallback,
class ElseCallback,
std::enable_if_t<
function_takes_identity_argument<ThenCallback>::value,
void*> = nullptr>
static decltype(auto) call(
ThenCallback&& thenCallback,
ElseCallback&& /* elseCallback */) {
// The _identity instance passed in can be used to delay evaluation of an
// expression, because the compiler can't know that it's just the identity
// we're passing in.
return thenCallback(_identity());
}
template <
class ThenCallback,
class ElseCallback,
std::enable_if_t<
!function_takes_identity_argument<ThenCallback>::value,
void*> = nullptr>
static decltype(auto) call(
ThenCallback&& thenCallback,
ElseCallback&& /* elseCallback */) {
return thenCallback();
}
};
template <>
struct _if_constexpr<false> final {
template <
class ThenCallback,
class ElseCallback,
std::enable_if_t<
function_takes_identity_argument<ElseCallback>::value,
void*> = nullptr>
static decltype(auto) call(
ThenCallback&& /* thenCallback */,
ElseCallback&& elseCallback) {
// The _identity instance passed in can be used to delay evaluation of an
// expression, because the compiler can't know that it's just the identity
// we're passing in.
return elseCallback(_identity());
}
template <
class ThenCallback,
class ElseCallback,
std::enable_if_t<
!function_takes_identity_argument<ElseCallback>::value,
void*> = nullptr>
static decltype(auto) call(
ThenCallback&& /* thenCallback */,
ElseCallback&& elseCallback) {
return elseCallback();
}
};
} // namespace detail
/*
* Get something like C++17 if constexpr in C++14.
*
* Example 1: simple constexpr if/then/else
* template<int arg> int increment_absolute_value() {
* int result = arg;
* if_constexpr<(arg > 0)>(
* [&] { ++result; } // then-case
* [&] { --result; } // else-case
* );
* return result;
* }
*
* Example 2: without else case (i.e. conditionally prune code from assembly)
* template<int arg> int decrement_if_positive() {
* int result = arg;
* if_constexpr<(arg > 0)>(
* // This decrement operation is only present in the assembly for
* // template instances with arg > 0.
* [&] { --result; }
* );
* return result;
* }
*
* Example 3: branch based on type (i.e. replacement for SFINAE)
* struct MyClass1 {int value;};
* struct MyClass2 {int val};
* template <class T>
* int func(T t) {
* return if_constexpr<std::is_same<T, MyClass1>::value>(
* [&](auto _) { return _(t).value; }, // this code is invalid for T ==
* MyClass2, so a regular non-constexpr if statement wouldn't compile
* [&](auto _) { return _(t).val; } // this code is invalid for T ==
* MyClass1
* );
* }
*
* Note: The _ argument passed in Example 3 is the identity function, i.e. it
* does nothing. It is used to force the compiler to delay type checking,
* because the compiler doesn't know what kind of _ is passed in. Without it,
* the compiler would fail when you try to access t.value but the member doesn't
* exist.
*
* Note: In Example 3, both branches return int, so func() returns int. This is
* not necessary. If func() had a return type of "auto", then both branches
* could return different types, say func<MyClass1>() could return int and
* func<MyClass2>() could return string.
*
* Note: if_constexpr<cond, t, f> is *eager* w.r.t. template expansion - meaning
* this polyfill does not behave like a true "if statement at compilation time".
* The `_` trick above only defers typechecking, which happens after
* templates have been expanded. (Of course this is all that's necessary for
* many use cases).
*/
template <bool Condition, class ThenCallback, class ElseCallback>
decltype(auto) if_constexpr(
ThenCallback&& thenCallback,
ElseCallback&& elseCallback) {
#if defined(__cpp_if_constexpr)
// If we have C++17, just use it's "if constexpr" feature instead of wrapping
// it. This will give us better error messages.
if constexpr (Condition) {
if constexpr (detail::function_takes_identity_argument<
ThenCallback>::value) {
// Note that we use static_cast<T&&>(t) instead of std::forward (or
// ::std::forward) because using the latter produces some compilation
// errors about ambiguous `std` on MSVC when using C++17. This static_cast
// is just what std::forward is doing under the hood, and is equivalent.
return static_cast<ThenCallback&&>(thenCallback)(detail::_identity());
} else {
return static_cast<ThenCallback&&>(thenCallback)();
}
} else {
if constexpr (detail::function_takes_identity_argument<
ElseCallback>::value) {
return static_cast<ElseCallback&&>(elseCallback)(detail::_identity());
} else {
return static_cast<ElseCallback&&>(elseCallback)();
}
}
#else
// C++14 implementation of if constexpr
return detail::_if_constexpr<Condition>::call(
static_cast<ThenCallback&&>(thenCallback),
static_cast<ElseCallback&&>(elseCallback));
#endif
}
template <bool Condition, class ThenCallback>
decltype(auto) if_constexpr(ThenCallback&& thenCallback) {
#if defined(__cpp_if_constexpr)
// If we have C++17, just use it's "if constexpr" feature instead of wrapping
// it. This will give us better error messages.
if constexpr (Condition) {
if constexpr (detail::function_takes_identity_argument<
ThenCallback>::value) {
// Note that we use static_cast<T&&>(t) instead of std::forward (or
// ::std::forward) because using the latter produces some compilation
// errors about ambiguous `std` on MSVC when using C++17. This static_cast
// is just what std::forward is doing under the hood, and is equivalent.
return static_cast<ThenCallback&&>(thenCallback)(detail::_identity());
} else {
return static_cast<ThenCallback&&>(thenCallback)();
}
}
#else
// C++14 implementation of if constexpr
return if_constexpr<Condition>(
static_cast<ThenCallback&&>(thenCallback), [](auto) {});
#endif
}
// GCC 4.8 doesn't define std::to_string, even though that's in C++11. Let's
// define it.
namespace detail {
class DummyClassForToString final {};
} // namespace detail
} // namespace guts
} // namespace c10
namespace std {
// We use SFINAE to detect if std::to_string exists for a type, but that only
// works if the function name is defined. So let's define a std::to_string for a
// dummy type. If you're getting an error here saying that this overload doesn't
// match your std::to_string() call, then you're calling std::to_string() but
// should be calling c10::guts::to_string().
inline std::string to_string(c10::guts::detail::DummyClassForToString) {
return "";
}
} // namespace std
namespace c10 {
namespace guts {
namespace detail {
template <class T, class Enable = void>
struct to_string_ final {
static std::string call(T value) {
std::ostringstream str;
str << value;
return str.str();
}
};
// If a std::to_string exists, use that instead
template <class T>
struct to_string_<T, void_t<decltype(std::to_string(std::declval<T>()))>>
final {
static std::string call(T value) {
return std::to_string(value);
}
};
} // namespace detail
template <class T>
inline std::string to_string(T value) {
return detail::to_string_<T>::call(value);
}
template <class T>
constexpr const T& min(const T& a, const T& b) {
return (b < a) ? b : a;
}
template <class T>
constexpr const T& max(const T& a, const T& b) {
return (a < b) ? b : a;
}
} // namespace guts
} // namespace c10
#endif // C10_UTIL_CPP17_H_