/// Defines the Half type (half-precision floating-point) including conversions | |
/// to standard C types and basic arithmetic operations. Note that arithmetic | |
/// operations are implemented by converting to floating point and | |
/// performing the operation in float32, instead of using CUDA half intrinsics. | |
/// Most uses of this type within ATen are memory bound, including the | |
/// element-wise kernels, and the half intrinsics aren't efficient on all GPUs. | |
/// If you are writing a compute bound kernel, you can use the CUDA half | |
/// intrinsics directly on the Half type from device code. | |
// Standard check for compiling CUDA with clang | |
namespace c10 { | |
namespace detail { | |
C10_DEVICE_HOST_FUNCTION inline float fp32_from_bits(uint32_t w) { | |
return as_float(w); | |
return __uint_as_float((unsigned int)w); | |
return _castu32_f32(w); | |
union { | |
uint32_t as_bits; | |
float as_value; | |
} fp32 = {w}; | |
return fp32.as_value; | |
} | |
C10_DEVICE_HOST_FUNCTION inline uint32_t fp32_to_bits(float f) { | |
return as_uint(f); | |
return (uint32_t)__float_as_uint(f); | |
return _castf32_u32(f); | |
union { | |
float as_value; | |
uint32_t as_bits; | |
} fp32 = {f}; | |
return fp32.as_bits; | |
} | |
/* | |
* Convert a 16-bit floating-point number in IEEE half-precision format, in bit | |
* representation, to a 32-bit floating-point number in IEEE single-precision | |
* format, in bit representation. | |
* | |
* @note The implementation doesn't use any floating-point operations. | |
*/ | |
inline uint32_t fp16_ieee_to_fp32_bits(uint16_t h) { | |
/* | |
* Extend the half-precision floating-point number to 32 bits and shift to the | |
* upper part of the 32-bit word: | |
* +---+-----+------------+-------------------+ | |
* | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000| | |
* +---+-----+------------+-------------------+ | |
* Bits 31 26-30 16-25 0-15 | |
* | |
* S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0 | |
* - zero bits. | |
*/ | |
const uint32_t w = (uint32_t)h << 16; | |
/* | |
* Extract the sign of the input number into the high bit of the 32-bit word: | |
* | |
* +---+----------------------------------+ | |
* | S |0000000 00000000 00000000 00000000| | |
* +---+----------------------------------+ | |
* Bits 31 0-31 | |
*/ | |
const uint32_t sign = w & UINT32_C(0x80000000); | |
/* | |
* Extract mantissa and biased exponent of the input number into the bits 0-30 | |
* of the 32-bit word: | |
* | |
* +---+-----+------------+-------------------+ | |
* | 0 |EEEEE|MM MMMM MMMM|0000 0000 0000 0000| | |
* +---+-----+------------+-------------------+ | |
* Bits 30 27-31 17-26 0-16 | |
*/ | |
const uint32_t nonsign = w & UINT32_C(0x7FFFFFFF); | |
/* | |
* Renorm shift is the number of bits to shift mantissa left to make the | |
* half-precision number normalized. If the initial number is normalized, some | |
* of its high 6 bits (sign == 0 and 5-bit exponent) equals one. In this case | |
* renorm_shift == 0. If the number is denormalize, renorm_shift > 0. Note | |
* that if we shift denormalized nonsign by renorm_shift, the unit bit of | |
* mantissa will shift into exponent, turning the biased exponent into 1, and | |
* making mantissa normalized (i.e. without leading 1). | |
*/ | |
unsigned long nonsign_bsr; | |
_BitScanReverse(&nonsign_bsr, (unsigned long)nonsign); | |
uint32_t renorm_shift = (uint32_t)nonsign_bsr ^ 31; | |
uint32_t renorm_shift = __builtin_clz(nonsign); | |
renorm_shift = renorm_shift > 5 ? renorm_shift - 5 : 0; | |
/* | |
* Iff half-precision number has exponent of 15, the addition overflows | |
* it into bit 31, and the subsequent shift turns the high 9 bits | |
* into 1. Thus inf_nan_mask == 0x7F800000 if the half-precision number | |
* had exponent of 15 (i.e. was NaN or infinity) 0x00000000 otherwise | |
*/ | |
const int32_t inf_nan_mask = | |
((int32_t)(nonsign + 0x04000000) >> 8) & INT32_C(0x7F800000); | |
/* | |
* Iff nonsign is 0, it overflows into 0xFFFFFFFF, turning bit 31 | |
* into 1. Otherwise, bit 31 remains 0. The signed shift right by 31 | |
* broadcasts bit 31 into all bits of the zero_mask. Thus zero_mask == | |
* 0xFFFFFFFF if the half-precision number was zero (+0.0h or -0.0h) | |
* 0x00000000 otherwise | |
*/ | |
const int32_t zero_mask = (int32_t)(nonsign - 1) >> 31; | |
/* | |
* 1. Shift nonsign left by renorm_shift to normalize it (if the input | |
* was denormal) | |
* 2. Shift nonsign right by 3 so the exponent (5 bits originally) | |
* becomes an 8-bit field and 10-bit mantissa shifts into the 10 high | |
* bits of the 23-bit mantissa of IEEE single-precision number. | |
* 3. Add 0x70 to the exponent (starting at bit 23) to compensate the | |
* different in exponent bias (0x7F for single-precision number less 0xF | |
* for half-precision number). | |
* 4. Subtract renorm_shift from the exponent (starting at bit 23) to | |
* account for renormalization. As renorm_shift is less than 0x70, this | |
* can be combined with step 3. | |
* 5. Binary OR with inf_nan_mask to turn the exponent into 0xFF if the | |
* input was NaN or infinity. | |
* 6. Binary ANDNOT with zero_mask to turn the mantissa and exponent | |
* into zero if the input was zero. | |
* 7. Combine with the sign of the input number. | |
*/ | |
return sign | | |
((((nonsign << renorm_shift >> 3) + ((0x70 - renorm_shift) << 23)) | | |
inf_nan_mask) & | |
~zero_mask); | |
} | |
/* | |
* Convert a 16-bit floating-point number in IEEE half-precision format, in bit | |
* representation, to a 32-bit floating-point number in IEEE single-precision | |
* format. | |
* | |
* @note The implementation relies on IEEE-like (no assumption about rounding | |
* mode and no operations on denormals) floating-point operations and bitcasts | |
* between integer and floating-point variables. | |
*/ | |
inline float fp16_ieee_to_fp32_value(uint16_t h) { | |
/* | |
* Extend the half-precision floating-point number to 32 bits and shift to the | |
* upper part of the 32-bit word: | |
* +---+-----+------------+-------------------+ | |
* | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000| | |
* +---+-----+------------+-------------------+ | |
* Bits 31 26-30 16-25 0-15 | |
* | |
* S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0 | |
* - zero bits. | |
*/ | |
const uint32_t w = (uint32_t)h << 16; | |
/* | |
* Extract the sign of the input number into the high bit of the 32-bit word: | |
* | |
* +---+----------------------------------+ | |
* | S |0000000 00000000 00000000 00000000| | |
* +---+----------------------------------+ | |
* Bits 31 0-31 | |
*/ | |
const uint32_t sign = w & UINT32_C(0x80000000); | |
/* | |
* Extract mantissa and biased exponent of the input number into the high bits | |
* of the 32-bit word: | |
* | |
* +-----+------------+---------------------+ | |
* |EEEEE|MM MMMM MMMM|0 0000 0000 0000 0000| | |
* +-----+------------+---------------------+ | |
* Bits 27-31 17-26 0-16 | |
*/ | |
const uint32_t two_w = w + w; | |
/* | |
* Shift mantissa and exponent into bits 23-28 and bits 13-22 so they become | |
* mantissa and exponent of a single-precision floating-point number: | |
* | |
* S|Exponent | Mantissa | |
* +-+---+-----+------------+----------------+ | |
* |0|000|EEEEE|MM MMMM MMMM|0 0000 0000 0000| | |
* +-+---+-----+------------+----------------+ | |
* Bits | 23-31 | 0-22 | |
* | |
* Next, there are some adjustments to the exponent: | |
* - The exponent needs to be corrected by the difference in exponent bias | |
* between single-precision and half-precision formats (0x7F - 0xF = 0x70) | |
* - Inf and NaN values in the inputs should become Inf and NaN values after | |
* conversion to the single-precision number. Therefore, if the biased | |
* exponent of the half-precision input was 0x1F (max possible value), the | |
* biased exponent of the single-precision output must be 0xFF (max possible | |
* value). We do this correction in two steps: | |
* - First, we adjust the exponent by (0xFF - 0x1F) = 0xE0 (see exp_offset | |
* below) rather than by 0x70 suggested by the difference in the exponent bias | |
* (see above). | |
* - Then we multiply the single-precision result of exponent adjustment by | |
* 2**(-112) to reverse the effect of exponent adjustment by 0xE0 less the | |
* necessary exponent adjustment by 0x70 due to difference in exponent bias. | |
* The floating-point multiplication hardware would ensure than Inf and | |
* NaN would retain their value on at least partially IEEE754-compliant | |
* implementations. | |
* | |
* Note that the above operations do not handle denormal inputs (where biased | |
* exponent == 0). However, they also do not operate on denormal inputs, and | |
* do not produce denormal results. | |
*/ | |
constexpr uint32_t exp_offset = UINT32_C(0xE0) << 23; | |
// const float exp_scale = 0x1.0p-112f; | |
constexpr uint32_t scale_bits = (uint32_t)15 << 23; | |
float exp_scale_val; | |
std::memcpy(&exp_scale_val, &scale_bits, sizeof(exp_scale_val)); | |
const float exp_scale = exp_scale_val; | |
const float normalized_value = | |
fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale; | |
/* | |
* Convert denormalized half-precision inputs into single-precision results | |
* (always normalized). Zero inputs are also handled here. | |
* | |
* In a denormalized number the biased exponent is zero, and mantissa has | |
* on-zero bits. First, we shift mantissa into bits 0-9 of the 32-bit word. | |
* | |
* zeros | mantissa | |
* +---------------------------+------------+ | |
* |0000 0000 0000 0000 0000 00|MM MMMM MMMM| | |
* +---------------------------+------------+ | |
* Bits 10-31 0-9 | |
* | |
* Now, remember that denormalized half-precision numbers are represented as: | |
* FP16 = mantissa * 2**(-24). | |
* The trick is to construct a normalized single-precision number with the | |
* same mantissa and thehalf-precision input and with an exponent which would | |
* scale the corresponding mantissa bits to 2**(-24). A normalized | |
* single-precision floating-point number is represented as: FP32 = (1 + | |
* mantissa * 2**(-23)) * 2**(exponent - 127) Therefore, when the biased | |
* exponent is 126, a unit change in the mantissa of the input denormalized | |
* half-precision number causes a change of the constructud single-precision | |
* number by 2**(-24), i.e. the same amount. | |
* | |
* The last step is to adjust the bias of the constructed single-precision | |
* number. When the input half-precision number is zero, the constructed | |
* single-precision number has the value of FP32 = 1 * 2**(126 - 127) = | |
* 2**(-1) = 0.5 Therefore, we need to subtract 0.5 from the constructed | |
* single-precision number to get the numerical equivalent of the input | |
* half-precision number. | |
*/ | |
constexpr uint32_t magic_mask = UINT32_C(126) << 23; | |
constexpr float magic_bias = 0.5f; | |
const float denormalized_value = | |
fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias; | |
/* | |
* - Choose either results of conversion of input as a normalized number, or | |
* as a denormalized number, depending on the input exponent. The variable | |
* two_w contains input exponent in bits 27-31, therefore if its smaller than | |
* 2**27, the input is either a denormal number, or zero. | |
* - Combine the result of conversion of exponent and mantissa with the sign | |
* of the input number. | |
*/ | |
constexpr uint32_t denormalized_cutoff = UINT32_C(1) << 27; | |
const uint32_t result = sign | | |
(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) | |
: fp32_to_bits(normalized_value)); | |
return fp32_from_bits(result); | |
} | |
/* | |
* Convert a 32-bit floating-point number in IEEE single-precision format to a | |
* 16-bit floating-point number in IEEE half-precision format, in bit | |
* representation. | |
* | |
* @note The implementation relies on IEEE-like (no assumption about rounding | |
* mode and no operations on denormals) floating-point operations and bitcasts | |
* between integer and floating-point variables. | |
*/ | |
inline uint16_t fp16_ieee_from_fp32_value(float f) { | |
// const float scale_to_inf = 0x1.0p+112f; | |
// const float scale_to_zero = 0x1.0p-110f; | |
constexpr uint32_t scale_to_inf_bits = (uint32_t)239 << 23; | |
constexpr uint32_t scale_to_zero_bits = (uint32_t)17 << 23; | |
float scale_to_inf_val, scale_to_zero_val; | |
std::memcpy(&scale_to_inf_val, &scale_to_inf_bits, sizeof(scale_to_inf_val)); | |
std::memcpy( | |
&scale_to_zero_val, &scale_to_zero_bits, sizeof(scale_to_zero_val)); | |
const float scale_to_inf = scale_to_inf_val; | |
const float scale_to_zero = scale_to_zero_val; | |
float base = ((signbit(f) != 0 ? -f : f) * scale_to_inf) * scale_to_zero; | |
float base = (fabsf(f) * scale_to_inf) * scale_to_zero; | |
const uint32_t w = fp32_to_bits(f); | |
const uint32_t shl1_w = w + w; | |
const uint32_t sign = w & UINT32_C(0x80000000); | |
uint32_t bias = shl1_w & UINT32_C(0xFF000000); | |
if (bias < UINT32_C(0x71000000)) { | |
bias = UINT32_C(0x71000000); | |
} | |
base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base; | |
const uint32_t bits = fp32_to_bits(base); | |
const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00); | |
const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF); | |
const uint32_t nonsign = exp_bits + mantissa_bits; | |
return static_cast<uint16_t>( | |
(sign >> 16) | | |
(shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign)); | |
} | |
} // namespace detail | |
struct alignas(2) Half { | |
unsigned short x; | |
struct from_bits_t {}; | |
C10_HOST_DEVICE static constexpr from_bits_t from_bits() { | |
return from_bits_t(); | |
} | |
// HIP wants __host__ __device__ tag, CUDA does not | |
C10_HOST_DEVICE Half() = default; | |
Half() = default; | |
constexpr C10_HOST_DEVICE Half(unsigned short bits, from_bits_t) : x(bits){}; | |
inline C10_HOST_DEVICE Half(float value); | |
inline C10_HOST_DEVICE operator float() const; | |
inline C10_HOST_DEVICE Half(const __half& value); | |
inline C10_HOST_DEVICE operator __half() const; | |
inline C10_HOST_DEVICE Half(const sycl::half& value); | |
inline C10_HOST_DEVICE operator sycl::half() const; | |
}; | |
// TODO : move to complex.h | |
template <> | |
struct alignas(4) complex<Half> { | |
Half real_; | |
Half imag_; | |
// Constructors | |
complex() = default; | |
// Half constructor is not constexpr so the following constructor can't | |
// be constexpr | |
C10_HOST_DEVICE explicit inline complex(const Half& real, const Half& imag) | |
: real_(real), imag_(imag) {} | |
C10_HOST_DEVICE inline complex(const c10::complex<float>& value) | |
: real_(value.real()), imag_(value.imag()) {} | |
// Conversion operator | |
inline C10_HOST_DEVICE operator c10::complex<float>() const { | |
return {real_, imag_}; | |
} | |
constexpr C10_HOST_DEVICE Half real() const { | |
return real_; | |
} | |
constexpr C10_HOST_DEVICE Half imag() const { | |
return imag_; | |
} | |
C10_HOST_DEVICE complex<Half>& operator+=(const complex<Half>& other) { | |
real_ = static_cast<float>(real_) + static_cast<float>(other.real_); | |
imag_ = static_cast<float>(imag_) + static_cast<float>(other.imag_); | |
return *this; | |
} | |
C10_HOST_DEVICE complex<Half>& operator-=(const complex<Half>& other) { | |
real_ = static_cast<float>(real_) - static_cast<float>(other.real_); | |
imag_ = static_cast<float>(imag_) - static_cast<float>(other.imag_); | |
return *this; | |
} | |
C10_HOST_DEVICE complex<Half>& operator*=(const complex<Half>& other) { | |
auto a = static_cast<float>(real_); | |
auto b = static_cast<float>(imag_); | |
auto c = static_cast<float>(other.real()); | |
auto d = static_cast<float>(other.imag()); | |
real_ = a * c - b * d; | |
imag_ = a * d + b * c; | |
return *this; | |
} | |
}; | |
// In some versions of MSVC, there will be a compiler error when building. | |
// C4146: unary minus operator applied to unsigned type, result still unsigned | |
// C4804: unsafe use of type 'bool' in operation | |
// It can be addressed by disabling the following warning. | |
// The overflow checks may involve float to int conversion which may | |
// trigger precision loss warning. Re-enable the warning once the code | |
// is fixed. See T58053069. | |
// bool can be converted to any type. | |
// Without specializing on bool, in pytorch_linux_trusty_py2_7_9_build: | |
// `error: comparison of constant '255' with boolean expression is always false` | |
// for `f > limit::max()` below | |
template <typename To, typename From> | |
typename std::enable_if<std::is_same<From, bool>::value, bool>::type overflows( | |
From /*f*/) { | |
return false; | |
} | |
// skip isnan and isinf check for integral types | |
template <typename To, typename From> | |
typename std::enable_if< | |
std::is_integral<From>::value && !std::is_same<From, bool>::value, | |
bool>::type | |
overflows(From f) { | |
using limit = std::numeric_limits<typename scalar_value_type<To>::type>; | |
if (!limit::is_signed && std::numeric_limits<From>::is_signed) { | |
// allow for negative numbers to wrap using two's complement arithmetic. | |
// For example, with uint8, this allows for `a - b` to be treated as | |
// `a + 255 * b`. | |
return greater_than_max<To>(f) || | |
(c10::is_negative(f) && -static_cast<uint64_t>(f) > limit::max()); | |
} else { | |
return c10::less_than_lowest<To>(f) || greater_than_max<To>(f); | |
} | |
} | |
template <typename To, typename From> | |
typename std::enable_if<std::is_floating_point<From>::value, bool>::type | |
overflows(From f) { | |
using limit = std::numeric_limits<typename scalar_value_type<To>::type>; | |
if (limit::has_infinity && std::isinf(static_cast<double>(f))) { | |
return false; | |
} | |
if (!limit::has_quiet_NaN && (f != f)) { | |
return true; | |
} | |
return f < limit::lowest() || f > limit::max(); | |
} | |
template <typename To, typename From> | |
typename std::enable_if<is_complex<From>::value, bool>::type overflows(From f) { | |
// casts from complex to real are considered to overflow if the | |
// imaginary component is non-zero | |
if (!is_complex<To>::value && f.imag() != 0) { | |
return true; | |
} | |
// Check for overflow componentwise | |
// (Technically, the imag overflow check is guaranteed to be false | |
// when !is_complex<To>, but any optimizer worth its salt will be | |
// able to figure it out.) | |
return overflows< | |
typename scalar_value_type<To>::type, | |
typename From::value_type>(f.real()) || | |
overflows< | |
typename scalar_value_type<To>::type, | |
typename From::value_type>(f.imag()); | |
} | |
C10_API std::ostream& operator<<(std::ostream& out, const Half& value); | |
} // namespace c10 | |