AbeShinzo0708's picture
Upload 2229 files
7e50900
raw
history blame
36.4 kB
// Copyright (C) 2011 - 2012 Andrzej Krzemienski.
//
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The idea and interface is based on Boost.Optional library
// authored by Fernando Luis Cacciola Carballal
//
// From https://github.com/akrzemi1/Optional
//
// C10
// - Move file to `c10` namespace.
// - Remove macro use in line 478 because the nvcc device compiler cannot handle
// it.
// - Revise constructor logic so that it is 1) consistent with c++ 17 standard
// documented here in (8):
// https://en.cppreference.com/w/cpp/utility/optional/optional, and 2) able to
// support initialization of optionals from convertible type U.
// - Remove the constructors for `optional(const T&)` and `optional(T&&)`, as
// they can be handled by the template<U=T> case with the default template
// argument.
// - Move `constexpr struct in_place_t {} in_place{}` to `c10/util/in_place.h`
// so that it can also be used in `c10/util/variant.h`.
// - Remove special cases for pre-c++14 compilers to make code simpler.
#ifndef C10_UTIL_OPTIONAL_H_
#define C10_UTIL_OPTIONAL_H_
#include <c10/macros/Macros.h>
#include <c10/util/ArrayRef.h>
#include <c10/util/in_place.h>
#include <cassert>
#include <functional>
#include <initializer_list>
#include <stdexcept>
#include <string>
#include <type_traits>
#include <utility>
#include <c10/util/C++17.h>
#include <c10/util/Metaprogramming.h>
C10_CLANG_DIAGNOSTIC_PUSH()
#if C10_CLANG_HAS_WARNING("-Wstring-conversion")
C10_CLANG_DIAGNOSTIC_IGNORE("-Wstring-conversion")
#endif
#if C10_CLANG_HAS_WARNING("-Wshorten-64-to-32")
C10_CLANG_DIAGNOSTIC_IGNORE("-Wshorten-64-to-32")
#endif
#if C10_CLANG_HAS_WARNING("-Wimplicit-float-conversion")
C10_CLANG_DIAGNOSTIC_IGNORE("-Wimplicit-float-conversion")
#endif
#if C10_CLANG_HAS_WARNING("-Wimplicit-int-conversion")
C10_CLANG_DIAGNOSTIC_IGNORE("-Wimplicit-int-conversion")
#endif
#define TR2_OPTIONAL_REQUIRES(...) \
typename std::enable_if<__VA_ARGS__::value, bool>::type = false
namespace c10 {
// 20.5.4, optional for object types
template <class T>
class optional;
// 20.5.5, optional for lvalue reference types
template <class T>
class optional<T&>;
// workaround: std utility functions aren't constexpr yet
template <class T>
inline constexpr T&& constexpr_forward(
typename std::remove_reference<T>::type& t) noexcept {
return static_cast<T&&>(t);
}
template <class T>
inline constexpr T&& constexpr_forward(
typename std::remove_reference<T>::type&& t) noexcept {
static_assert(!std::is_lvalue_reference<T>::value, "!!");
return static_cast<T&&>(t);
}
template <class T>
inline constexpr typename std::remove_reference<T>::type&& constexpr_move(
T&& t) noexcept {
return static_cast<typename std::remove_reference<T>::type&&>(t);
}
#if defined NDEBUG
#define TR2_OPTIONAL_ASSERTED_EXPRESSION(CHECK, EXPR) (EXPR)
#else
#define TR2_OPTIONAL_ASSERTED_EXPRESSION(CHECK, EXPR) \
((CHECK) ? (EXPR) : ([] { assert(!#CHECK); }(), (EXPR)))
#endif
#if defined(__CUDA_ARCH__)
#define TR2_OPTIONAL_HOST_CONSTEXPR
#else
#define TR2_OPTIONAL_HOST_CONSTEXPR constexpr
#endif
// Sphinx chokes on static_addressof, so exclude it from Doxygen
// generation. See https://github.com/sphinx-doc/sphinx/issues/7944
// \cond
namespace detail_ {
// VS doesn't handle constexpr well, so we need to skip these stuff.
#if (defined _MSC_VER)
template <typename T>
T* static_addressof(T& ref) {
return std::addressof(ref);
}
#else
// static_addressof: a constexpr version of addressof
template <typename T>
struct has_overloaded_addressof {
template <class X>
constexpr static bool has_overload(...) {
return false;
}
template <class X, size_t S = sizeof(std::declval<X&>().operator&())>
constexpr static bool has_overload(bool) {
return true;
}
constexpr static bool value = has_overload<T>(true);
};
template <typename T, TR2_OPTIONAL_REQUIRES(!has_overloaded_addressof<T>)>
constexpr T* static_addressof(T& ref) {
return &ref;
}
template <typename T, TR2_OPTIONAL_REQUIRES(has_overloaded_addressof<T>)>
T* static_addressof(T& ref) {
return std::addressof(ref);
}
#endif
// the call to convert<A>(b) has return type A and converts b to type A iff b
// decltype(b) is implicitly convertible to A
template <class U>
constexpr U convert(U v) {
return v;
}
} // namespace detail_
// \endcond
constexpr struct trivial_init_t {
} trivial_init{};
// 20.5.7, Disengaged state indicator
struct nullopt_t {
constexpr explicit nullopt_t(int) {}
};
constexpr nullopt_t nullopt{0};
// 20.5.8, class bad_optional_access
class bad_optional_access : public std::logic_error {
public:
explicit bad_optional_access(const std::string& what_arg)
: logic_error{what_arg} {}
explicit bad_optional_access(const char* what_arg) : logic_error{what_arg} {}
};
template <class T>
union storage_t {
unsigned char dummy_;
T value_;
#if __cplusplus >= 202002L
constexpr
#endif
storage_t(trivial_init_t) noexcept {
new (&dummy_) unsigned char;
}
template <class... Args>
constexpr storage_t(Args&&... args)
: value_(constexpr_forward<Args>(args)...) {}
~storage_t() {}
};
template <class T>
union constexpr_storage_t {
unsigned char dummy_;
T value_;
#if __cplusplus >= 202002L
// C++20 lifted the requirement to initialize a union member in order to be
// constexpr.
constexpr constexpr_storage_t(trivial_init_t) noexcept {
new (&dummy_) unsigned char;
}
#else
constexpr constexpr_storage_t(trivial_init_t) noexcept : dummy_() {}
#endif
template <class... Args>
constexpr constexpr_storage_t(Args&&... args)
: value_(constexpr_forward<Args>(args)...) {}
~constexpr_storage_t() = default;
};
template <class T>
struct optional_base {
bool init_;
storage_t<T> storage_;
constexpr optional_base() noexcept : init_(false), storage_(trivial_init){};
explicit constexpr optional_base(const optional_base<T>& v)
: init_(v.init_), storage_(trivial_init) {
if (init_) {
::new (dataptr()) T(v.storage_.value_);
}
}
explicit constexpr optional_base(const T& v) : init_(true), storage_(v) {}
explicit constexpr optional_base(optional_base<T>&& v) noexcept(
std::is_nothrow_move_constructible<T>::value)
: init_(v.init_), storage_(trivial_init) {
if (init_) {
::new (dataptr()) T(std::move(v.storage_.value_));
}
}
explicit constexpr optional_base(T&& v)
: init_(true), storage_(constexpr_move(v)) {}
template <class... Args>
explicit optional_base(in_place_t, Args&&... args)
: init_(true), storage_(constexpr_forward<Args>(args)...) {}
template <
class U,
class... Args,
TR2_OPTIONAL_REQUIRES(std::is_constructible<T, std::initializer_list<U>>)>
explicit optional_base(
in_place_t,
std::initializer_list<U> il,
Args&&... args)
: init_(true), storage_(il, std::forward<Args>(args)...) {}
optional_base& operator=(const optional_base& rhs) {
if (init_ && !rhs.init_) {
clear();
} else if (!init_ && rhs.init_) {
init_ = true;
::new (dataptr()) T(rhs.storage_.value_);
} else if (init_ && rhs.init_) {
storage_.value_ = rhs.storage_.value_;
}
return *this;
}
optional_base& operator=(optional_base&& rhs) noexcept(
std::is_nothrow_move_assignable<T>::value&&
std::is_nothrow_move_constructible<T>::value) {
if (init_ && !rhs.init_) {
clear();
} else if (!init_ && rhs.init_) {
init_ = true;
::new (dataptr()) T(std::move(rhs.storage_.value_));
} else if (init_ && rhs.init_) {
storage_.value_ = std::move(rhs.storage_.value_);
}
return *this;
}
~optional_base() {
if (init_)
storage_.value_.T::~T();
}
constexpr bool initialized() const noexcept {
return init_;
}
void setInitialized(bool init) noexcept {
init_ = init;
}
private:
typename std::remove_const<T>::type* dataptr() {
return std::addressof(storage_.value_);
}
constexpr const T* dataptr() const {
return detail_::static_addressof(storage_.value_);
}
void clear() noexcept {
if (init_) {
dataptr()->~T();
}
init_ = false;
}
};
template <class T>
struct constexpr_optional_base {
bool init_;
constexpr_storage_t<T> storage_;
constexpr constexpr_optional_base() noexcept
: init_(false), storage_(trivial_init){};
explicit constexpr constexpr_optional_base(
const constexpr_optional_base<T>& v)
: init_(v.init_), storage_(trivial_init) {
if (init_) {
::new (dataptr()) T(v.storage_.value_);
}
}
explicit constexpr constexpr_optional_base(
constexpr_optional_base<T>&&
v) noexcept(std::is_nothrow_move_constructible<T>::value)
: init_(v.init_), storage_(trivial_init) {
if (init_) {
::new (dataptr()) T(std::move(v.storage_.value_));
}
}
explicit constexpr constexpr_optional_base(const T& v)
: init_(true), storage_(v) {}
explicit constexpr constexpr_optional_base(T&& v)
: init_(true), storage_(constexpr_move(v)) {}
template <class... Args>
explicit constexpr constexpr_optional_base(in_place_t, Args&&... args)
: init_(true), storage_(constexpr_forward<Args>(args)...) {}
template <
class U,
class... Args,
TR2_OPTIONAL_REQUIRES(std::is_constructible<T, std::initializer_list<U>>)>
constexpr explicit constexpr_optional_base(
in_place_t,
std::initializer_list<U> il,
Args&&... args)
: init_(true), storage_(il, std::forward<Args>(args)...) {}
~constexpr_optional_base() = default;
constexpr_optional_base& operator=(const constexpr_optional_base& rhs) {
if (init_ && !rhs.init_) {
clear();
} else if (!init_ && rhs.init_) {
init_ = true;
::new (dataptr()) T(rhs.storage_.value_);
} else if (init_ && rhs.init_) {
storage_.value_ = rhs.storage_.value_;
}
return *this;
}
constexpr_optional_base& operator=(constexpr_optional_base&& rhs) noexcept(
std::is_nothrow_move_assignable<T>::value&&
std::is_nothrow_move_constructible<T>::value) {
if (init_ && !rhs.init_) {
clear();
} else if (!init_ && rhs.init_) {
init_ = true;
::new (dataptr()) T(std::move(rhs.storage_.value_));
} else if (init_ && rhs.init_) {
storage_.value_ = std::move(rhs.storage_.value_);
}
return *this;
}
constexpr bool initialized() const noexcept {
return init_;
}
void setInitialized(bool init) noexcept {
init_ = init;
}
private:
typename std::remove_const<T>::type* dataptr() {
return std::addressof(storage_.value_);
}
constexpr const T* dataptr() const {
return detail_::static_addressof(storage_.value_);
}
void clear() noexcept {
init_ = false;
}
};
// HACK: Optimization for trivially copyable types. The mainline
// implementation fails to have trivial copy/move operations in these
// cases, and we care about them, so just implement that directly.
template <class T>
struct trivially_copyable_optimization_optional_base {
bool init_;
constexpr_storage_t<T> storage_;
constexpr trivially_copyable_optimization_optional_base() noexcept
: init_(false), storage_(trivial_init) {}
explicit constexpr trivially_copyable_optimization_optional_base(const T& v)
: init_(true), storage_(v) {}
explicit constexpr trivially_copyable_optimization_optional_base(T&& v)
: init_(true), storage_(constexpr_move(v)) {}
template <class... Args>
explicit constexpr trivially_copyable_optimization_optional_base(
in_place_t,
Args&&... args)
: init_(true), storage_(constexpr_forward<Args>(args)...) {}
template <
class U,
class... Args,
TR2_OPTIONAL_REQUIRES(std::is_constructible<T, std::initializer_list<U>>)>
constexpr explicit trivially_copyable_optimization_optional_base(
in_place_t,
std::initializer_list<U> il,
Args&&... args)
: init_(true), storage_(il, std::forward<Args>(args)...) {}
~trivially_copyable_optimization_optional_base() = default;
constexpr bool initialized() const noexcept {
return init_;
}
void setInitialized(bool init) noexcept {
init_ = init;
}
};
// HACK: Optimization for ArrayRef<T>. We take advantage of an unused
// bit pattern in ArrayRef (inspired by Arthur O'Dwyer's
// tombstone_traits -- see https://youtu.be/MWBfmmg8-Yo?t=2466) to
// keep the size of c10::optional::ArrayRef<T> down to 16 bytes, which
// allows it to be passed to functions in registers instead of getting
// passed in memory per item 5c of the classification algorithm in
// section 3.2.3 of the System V ABI document
// (https://www.uclibc.org/docs/psABI-x86_64.pdf).
template <class ArrayRefT>
class arrayref_optional_base {
public:
union storage {
struct raw {
// ArrayRef has the invariant that if Data is nullptr then
// Length must be zero, so this is an unused bit pattern.
const void* p = nullptr;
size_t sz = 1;
} uninitialized_{};
ArrayRefT value_;
constexpr storage() noexcept : uninitialized_() {
setUninitialized();
}
constexpr void setUninitialized() noexcept {
uninitialized_.p = nullptr;
uninitialized_.sz = 1;
}
explicit constexpr storage(ArrayRefT& v) : value_(v) {}
template <typename T>
explicit constexpr storage(const std::initializer_list<T>& v) : value_(v) {}
template <class... Args>
explicit constexpr storage(Args&&... args)
: value_(constexpr_forward<Args>(args)...) {}
};
storage storage_;
constexpr arrayref_optional_base() noexcept = default;
explicit constexpr arrayref_optional_base(const ArrayRefT& v) : storage_(v) {}
template <class... Args>
explicit constexpr arrayref_optional_base(in_place_t, Args&&... args)
: storage_(constexpr_forward<Args>(args)...) {}
template <typename T>
explicit constexpr arrayref_optional_base(
in_place_t,
const std::initializer_list<T>& v)
: storage_(v) {}
constexpr bool initialized() const noexcept {
typename storage::raw repr;
// Cast to void* to suppress GCC's -Wclass-memaccess.
memcpy(
static_cast<void*>(&repr),
static_cast<const void*>(&storage_),
sizeof(storage_));
return repr.p != nullptr || repr.sz == 0;
}
void setInitialized(bool init) noexcept {
if (!init) {
storage_.setUninitialized();
} else {
assert(initialized());
}
}
};
namespace detail_ {
template <typename T>
struct is_arrayref : std::false_type {};
template <typename T>
struct is_arrayref<c10::ArrayRef<T>> : std::true_type {};
} // namespace detail_
template <class T>
using OptionalBase = std::conditional_t<
detail_::is_arrayref<T>::value,
arrayref_optional_base<T>,
std::conditional_t<
std::is_trivially_destructible<T>::value &&
C10_IS_TRIVIALLY_COPYABLE(T) &&
// Avoid using is_trivially_copy_{constructible,assignable}
// because old GCC versions don't support them. Also,
// is_trivially_copyable seems not to do what I expect, so check
// trivially_copyable_optimization_optional_base directly.
std::is_copy_constructible<
trivially_copyable_optimization_optional_base<T>>::value &&
std::is_copy_assignable<
trivially_copyable_optimization_optional_base<T>>::value,
trivially_copyable_optimization_optional_base<T>,
std::conditional_t<
std::is_trivially_destructible<T>::value, // if possible
constexpr_optional_base<std::remove_const_t<T>>, // use base with
// trivial
// destructor
optional_base<std::remove_const_t<T>>>>>;
template <class T>
class optional : private OptionalBase<T> {
template <class U> // re-declaration for nvcc on Windows.
using OptionalBase = std::conditional_t<
detail_::is_arrayref<U>::value,
arrayref_optional_base<U>,
std::conditional_t<
std::is_trivially_destructible<U>::value &&
C10_IS_TRIVIALLY_COPYABLE(U) &&
// Avoid using is_trivially_copy_{constructible,assignable}
// because old GCC versions don't support them. Also,
// is_trivially_copyable seems not to do what I expect, so
// check trivially_copyable_optimization_optional_base
// directly.
std::is_copy_constructible<
trivially_copyable_optimization_optional_base<U>>::value &&
std::is_copy_assignable<
trivially_copyable_optimization_optional_base<U>>::value,
trivially_copyable_optimization_optional_base<U>,
std::conditional_t<
std::is_trivially_destructible<U>::value, // if possible
constexpr_optional_base<std::remove_const_t<U>>, // use base
// with
// trivial
// destructor
optional_base<std::remove_const_t<U>>>>>;
static_assert(
!std::is_same<typename std::decay<T>::type, nullopt_t>::value,
"bad T");
static_assert(
!std::is_same<typename std::decay<T>::type, in_place_t>::value,
"bad T");
constexpr bool initialized() const noexcept {
return OptionalBase<T>::initialized();
}
typename std::remove_const<T>::type* dataptr() {
return std::addressof(OptionalBase<T>::storage_.value_);
}
constexpr const T* dataptr() const {
return detail_::static_addressof(OptionalBase<T>::storage_.value_);
}
constexpr const T& contained_val() const& {
return OptionalBase<T>::storage_.value_;
}
constexpr T&& contained_val() && {
return std::move(OptionalBase<T>::storage_.value_);
}
constexpr T& contained_val() & {
return OptionalBase<T>::storage_.value_;
}
void clear() noexcept {
if (initialized())
dataptr()->~T();
OptionalBase<T>::setInitialized(false);
}
template <class... Args>
void initialize(Args&&... args) noexcept(
noexcept(T(std::forward<Args>(args)...))) {
assert(!initialized());
::new (static_cast<void*>(dataptr())) T(std::forward<Args>(args)...);
OptionalBase<T>::setInitialized(true);
}
template <class U, class... Args>
void initialize(std::initializer_list<U> il, Args&&... args) noexcept(
noexcept(T(il, std::forward<Args>(args)...))) {
assert(!initialized());
::new (static_cast<void*>(dataptr())) T(il, std::forward<Args>(args)...);
OptionalBase<T>::setInitialized(true);
}
public:
typedef T value_type;
// 20.5.5.1, constructors
constexpr optional() noexcept : OptionalBase<T>(){};
constexpr optional(nullopt_t) noexcept : OptionalBase<T>(){};
optional(const optional& rhs) = default;
optional(optional&& rhs) = default;
// see https://github.com/akrzemi1/Optional/issues/16
// and https://en.cppreference.com/w/cpp/utility/optional/optional,
// in constructor 8, the std::optional spec can allow initialization
// of optionals from convertible type U
//
// 8 - implicit move construct from value
template <
typename U = T,
TR2_OPTIONAL_REQUIRES(
std::is_constructible<T, U&&>::value &&
!std::is_same<typename std::decay<U>::type, in_place_t>::value &&
!std::is_same<typename std::decay<U>::type, optional<T>>::value &&
std::is_convertible<U&&, T>)>
constexpr optional(U&& u) : OptionalBase<T>(std::forward<U>(u)) {}
// 8 - explicit move construct from value
template <
typename U = T,
TR2_OPTIONAL_REQUIRES(
std::is_constructible<T, U&&>::value &&
!std::is_same<typename std::decay<U>::type, in_place_t>::value &&
!std::is_same<typename std::decay<U>::type, optional<T>>::value &&
!std::is_convertible<U&&, T>)>
explicit constexpr optional(U&& u) : OptionalBase<T>(std::forward<U>(u)) {}
template <class... Args>
explicit constexpr optional(in_place_t, Args&&... args)
: OptionalBase<T>(in_place_t{}, constexpr_forward<Args>(args)...) {}
template <
class U,
class... Args,
TR2_OPTIONAL_REQUIRES(std::is_constructible<T, std::initializer_list<U>>)>
constexpr explicit optional(
in_place_t,
std::initializer_list<U> il,
Args&&... args)
: OptionalBase<T>(in_place_t{}, il, constexpr_forward<Args>(args)...) {}
// 20.5.4.2, Destructor
~optional() = default;
// 20.5.4.3, assignment
optional& operator=(nullopt_t) noexcept {
clear();
return *this;
}
optional& operator=(const optional& rhs) = default;
optional& operator=(optional&& rhs) = default;
template <class U = T>
auto operator=(U&& v) -> typename std::enable_if<
std::is_constructible<T, U>::value &&
!std::is_same<typename std::decay<U>::type, optional<T>>::value &&
(std::is_scalar<T>::value ||
std::is_same<typename std::decay<U>::type, T>::value) &&
std::is_assignable<T&, U>::value,
optional&>::type {
if (initialized()) {
contained_val() = std::forward<U>(v);
} else {
initialize(std::forward<U>(v));
}
return *this;
}
template <class... Args>
void emplace(Args&&... args) {
clear();
initialize(std::forward<Args>(args)...);
}
template <class U, class... Args>
void emplace(std::initializer_list<U> il, Args&&... args) {
clear();
initialize<U, Args...>(il, std::forward<Args>(args)...);
}
// 20.5.4.4, Swap
void swap(optional<T>& rhs) noexcept(
std::is_nothrow_move_constructible<T>::value&& noexcept(
std::swap(std::declval<T&>(), std::declval<T&>()))) {
if (initialized() == true && rhs.initialized() == false) {
rhs.initialize(std::move(**this));
clear();
} else if (initialized() == false && rhs.initialized() == true) {
initialize(std::move(*rhs));
rhs.clear();
} else if (initialized() == true && rhs.initialized() == true) {
using std::swap;
swap(**this, *rhs);
}
}
// 20.5.4.5, Observers
explicit constexpr operator bool() const noexcept {
return initialized();
}
constexpr bool has_value() const noexcept {
return initialized();
}
TR2_OPTIONAL_HOST_CONSTEXPR T const* operator->() const {
return TR2_OPTIONAL_ASSERTED_EXPRESSION(initialized(), dataptr());
}
TR2_OPTIONAL_HOST_CONSTEXPR T* operator->() {
assert(initialized());
return dataptr();
}
TR2_OPTIONAL_HOST_CONSTEXPR T const& operator*() const& {
return TR2_OPTIONAL_ASSERTED_EXPRESSION(initialized(), contained_val());
}
TR2_OPTIONAL_HOST_CONSTEXPR T& operator*() & {
assert(initialized());
return contained_val();
}
TR2_OPTIONAL_HOST_CONSTEXPR T&& operator*() && {
assert(initialized());
return constexpr_move(contained_val());
}
TR2_OPTIONAL_HOST_CONSTEXPR T const& value() const& {
return initialized()
? contained_val()
: (throw bad_optional_access("bad optional access"), contained_val());
}
TR2_OPTIONAL_HOST_CONSTEXPR T& value() & {
return initialized()
? contained_val()
: (throw bad_optional_access("bad optional access"), contained_val());
}
TR2_OPTIONAL_HOST_CONSTEXPR T&& value() && {
if (!initialized())
throw bad_optional_access("bad optional access");
return std::move(contained_val());
}
template <class V>
constexpr T value_or(V&& v) const& {
return *this ? **this : detail_::convert<T>(constexpr_forward<V>(v));
}
template <class V>
constexpr T value_or(V&& v) && {
return *this
? constexpr_move(const_cast<optional<T>&>(*this).contained_val())
: detail_::convert<T>(constexpr_forward<V>(v));
}
// 20.6.3.6, modifiers
void reset() noexcept {
clear();
}
};
template <class T, class F>
constexpr T value_or_else(const optional<T>& v, F&& func) {
static_assert(
std::is_convertible<
typename guts::infer_function_traits_t<F>::return_type,
T>::value,
"func parameters must be a callable that returns a type convertible to the value stored in the optional");
return v.has_value() ? *v : detail_::convert<T>(std::forward<F>(func)());
}
template <class T, class F>
constexpr T value_or_else(optional<T>&& v, F&& func) {
static_assert(
std::is_convertible<
typename guts::infer_function_traits_t<F>::return_type,
T>::value,
"func parameters must be a callable that returns a type convertible to the value stored in the optional");
return v.has_value() ? constexpr_move(std::move(v).contained_val())
: detail_::convert<T>(std::forward<F>(func)());
}
// XXX: please refrain from using optional<T&>, since it is being against with
// the optional standard in c++ 17, see the debate and the details here:
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3406#rationale.refs
// if you need it, consider using optional<std::reference_wrapper<T>> or *
// pointer
//
// we leave the implementation here in case we want to reconsider using it in
// the future if it becomes a definitely necessary case.
template <class T>
class optional<T&> {
// add this assert to prevent user from using optional reference as indicated
// above
static_assert(
sizeof(T) == 0,
"optional references is ill-formed, \
consider use optional of a std::reference_wrapper of type T to \
hold a reference if you really need to");
static_assert(!std::is_same<T, nullopt_t>::value, "bad T");
static_assert(!std::is_same<T, in_place_t>::value, "bad T");
T* ref;
public:
// 20.5.5.1, construction/destruction
constexpr optional() noexcept : ref(nullptr) {}
constexpr optional(nullopt_t) noexcept : ref(nullptr) {}
template <typename U = T>
constexpr optional(U& u) noexcept : ref(detail_::static_addressof(u)) {}
template <typename U = T>
optional(U&&) = delete;
constexpr optional(const optional& rhs) noexcept : ref(rhs.ref) {}
explicit constexpr optional(in_place_t, T& v) noexcept
: ref(detail_::static_addressof(v)) {}
explicit optional(in_place_t, T&&) = delete;
~optional() = default;
// 20.5.5.2, mutation
optional& operator=(nullopt_t) noexcept {
ref = nullptr;
return *this;
}
// optional& operator=(const optional& rhs) noexcept {
// ref = rhs.ref;
// return *this;
// }
// optional& operator=(optional&& rhs) noexcept {
// ref = rhs.ref;
// return *this;
// }
template <typename U>
auto operator=(U&& rhs) noexcept -> typename std::enable_if<
std::is_same<typename std::decay<U>::type, optional<T&>>::value,
optional&>::type {
ref = rhs.ref;
return *this;
}
template <typename U>
auto operator=(U&& rhs) noexcept -> typename std::enable_if<
!std::is_same<typename std::decay<U>::type, optional<T&>>::value,
optional&>::type = delete;
void emplace(T& v) noexcept {
ref = detail_::static_addressof(v);
}
void emplace(T&&) = delete;
void swap(optional<T&>& rhs) noexcept {
std::swap(ref, rhs.ref);
}
// 20.5.5.3, observers
TR2_OPTIONAL_HOST_CONSTEXPR T* operator->() const {
return TR2_OPTIONAL_ASSERTED_EXPRESSION(ref, ref);
}
TR2_OPTIONAL_HOST_CONSTEXPR T& operator*() const {
return TR2_OPTIONAL_ASSERTED_EXPRESSION(ref, *ref);
}
constexpr T& value() const {
return ref ? *ref
: (throw bad_optional_access("bad optional access"), *ref);
}
explicit constexpr operator bool() const noexcept {
return ref != nullptr;
}
constexpr bool has_value() const noexcept {
return ref != nullptr;
}
template <class V>
constexpr typename std::decay<T>::type value_or(V&& v) const {
return *this ? **this
: detail_::convert<typename std::decay<T>::type>(
constexpr_forward<V>(v));
}
// x.x.x.x, modifiers
void reset() noexcept {
ref = nullptr;
}
};
template <class T>
class optional<T&&> {
static_assert(sizeof(T) == 0, "optional rvalue references disallowed");
};
// 20.5.8, Relational operators
template <class T>
constexpr bool operator==(const optional<T>& x, const optional<T>& y) {
return bool(x) != bool(y) ? false : bool(x) == false ? true : *x == *y;
}
template <class T>
constexpr bool operator!=(const optional<T>& x, const optional<T>& y) {
return !(x == y);
}
template <class T>
constexpr bool operator<(const optional<T>& x, const optional<T>& y) {
return (!y) ? false : (!x) ? true : *x < *y;
}
template <class T>
constexpr bool operator>(const optional<T>& x, const optional<T>& y) {
return (y < x);
}
template <class T>
constexpr bool operator<=(const optional<T>& x, const optional<T>& y) {
return !(y < x);
}
template <class T>
constexpr bool operator>=(const optional<T>& x, const optional<T>& y) {
return !(x < y);
}
// 20.5.9, Comparison with nullopt
template <class T>
constexpr bool operator==(const optional<T>& x, nullopt_t) noexcept {
return (!x);
}
template <class T>
constexpr bool operator==(nullopt_t, const optional<T>& x) noexcept {
return (!x);
}
template <class T>
constexpr bool operator!=(const optional<T>& x, nullopt_t) noexcept {
return bool(x);
}
template <class T>
constexpr bool operator!=(nullopt_t, const optional<T>& x) noexcept {
return bool(x);
}
template <class T>
constexpr bool operator<(const optional<T>&, nullopt_t) noexcept {
return false;
}
template <class T>
constexpr bool operator<(nullopt_t, const optional<T>& x) noexcept {
return bool(x);
}
template <class T>
constexpr bool operator<=(const optional<T>& x, nullopt_t) noexcept {
return (!x);
}
template <class T>
constexpr bool operator<=(nullopt_t, const optional<T>&) noexcept {
return true;
}
template <class T>
constexpr bool operator>(const optional<T>& x, nullopt_t) noexcept {
return bool(x);
}
template <class T>
constexpr bool operator>(nullopt_t, const optional<T>&) noexcept {
return false;
}
template <class T>
constexpr bool operator>=(const optional<T>&, nullopt_t) noexcept {
return true;
}
template <class T>
constexpr bool operator>=(nullopt_t, const optional<T>& x) noexcept {
return (!x);
}
// 20.5.10, Comparison with T
template <class T, class U>
constexpr bool operator==(const optional<T>& x, const U& v) {
return bool(x) ? *x == v : false;
}
template <class T, class U>
constexpr bool operator==(const U& v, const optional<T>& x) {
return bool(x) ? v == *x : false;
}
template <class T, class U>
constexpr bool operator!=(const optional<T>& x, const U& v) {
return bool(x) ? *x != v : true;
}
template <class T, class U>
constexpr bool operator!=(const U& v, const optional<T>& x) {
return bool(x) ? v != *x : true;
}
template <class T, class U>
constexpr bool operator<(const optional<T>& x, const U& v) {
return bool(x) ? *x < v : true;
}
template <class T, class U>
constexpr bool operator>(const U& v, const optional<T>& x) {
return bool(x) ? v > *x : true;
}
template <class T, class U>
constexpr bool operator>(const optional<T>& x, const U& v) {
return bool(x) ? *x > v : false;
}
template <class T, class U>
constexpr bool operator<(const U& v, const optional<T>& x) {
return bool(x) ? v < *x : false;
}
template <class T, class U>
constexpr bool operator>=(const optional<T>& x, const U& v) {
return bool(x) ? *x >= v : false;
}
template <class T, class U>
constexpr bool operator<=(const U& v, const optional<T>& x) {
return bool(x) ? v <= *x : false;
}
template <class T, class U>
constexpr bool operator<=(const optional<T>& x, const U& v) {
return bool(x) ? *x <= v : true;
}
template <class T, class U>
constexpr bool operator>=(const U& v, const optional<T>& x) {
return bool(x) ? v >= *x : true;
}
// Comparison of optional<T&> with T
template <class T>
constexpr bool operator==(const optional<T&>& x, const T& v) {
return bool(x) ? *x == v : false;
}
template <class T>
constexpr bool operator==(const T& v, const optional<T&>& x) {
return bool(x) ? v == *x : false;
}
template <class T>
constexpr bool operator!=(const optional<T&>& x, const T& v) {
return bool(x) ? *x != v : true;
}
template <class T>
constexpr bool operator!=(const T& v, const optional<T&>& x) {
return bool(x) ? v != *x : true;
}
template <class T>
constexpr bool operator<(const optional<T&>& x, const T& v) {
return bool(x) ? *x < v : true;
}
template <class T>
constexpr bool operator>(const T& v, const optional<T&>& x) {
return bool(x) ? v > *x : true;
}
template <class T>
constexpr bool operator>(const optional<T&>& x, const T& v) {
return bool(x) ? *x > v : false;
}
template <class T>
constexpr bool operator<(const T& v, const optional<T&>& x) {
return bool(x) ? v < *x : false;
}
template <class T>
constexpr bool operator>=(const optional<T&>& x, const T& v) {
return bool(x) ? *x >= v : false;
}
template <class T>
constexpr bool operator<=(const T& v, const optional<T&>& x) {
return bool(x) ? v <= *x : false;
}
template <class T>
constexpr bool operator<=(const optional<T&>& x, const T& v) {
return bool(x) ? *x <= v : true;
}
template <class T>
constexpr bool operator>=(const T& v, const optional<T&>& x) {
return bool(x) ? v >= *x : true;
}
// Comparison of optional<T const&> with T
template <class T>
constexpr bool operator==(const optional<const T&>& x, const T& v) {
return bool(x) ? *x == v : false;
}
template <class T>
constexpr bool operator==(const T& v, const optional<const T&>& x) {
return bool(x) ? v == *x : false;
}
template <class T>
constexpr bool operator!=(const optional<const T&>& x, const T& v) {
return bool(x) ? *x != v : true;
}
template <class T>
constexpr bool operator!=(const T& v, const optional<const T&>& x) {
return bool(x) ? v != *x : true;
}
template <class T>
constexpr bool operator<(const optional<const T&>& x, const T& v) {
return bool(x) ? *x < v : true;
}
template <class T>
constexpr bool operator>(const T& v, const optional<const T&>& x) {
return bool(x) ? v > *x : true;
}
template <class T>
constexpr bool operator>(const optional<const T&>& x, const T& v) {
return bool(x) ? *x > v : false;
}
template <class T>
constexpr bool operator<(const T& v, const optional<const T&>& x) {
return bool(x) ? v < *x : false;
}
template <class T>
constexpr bool operator>=(const optional<const T&>& x, const T& v) {
return bool(x) ? *x >= v : false;
}
template <class T>
constexpr bool operator<=(const T& v, const optional<const T&>& x) {
return bool(x) ? v <= *x : false;
}
template <class T>
constexpr bool operator<=(const optional<const T&>& x, const T& v) {
return bool(x) ? *x <= v : true;
}
template <class T>
constexpr bool operator>=(const T& v, const optional<const T&>& x) {
return bool(x) ? v >= *x : true;
}
// 20.5.12, Specialized algorithms
template <class T>
void swap(optional<T>& x, optional<T>& y) noexcept(noexcept(x.swap(y))) {
x.swap(y);
}
template <class T>
constexpr optional<typename std::decay<T>::type> make_optional(T&& v) {
return optional<typename std::decay<T>::type>(constexpr_forward<T>(v));
}
template <class X>
constexpr optional<X&> make_optional(std::reference_wrapper<X> v) {
return optional<X&>(v.get());
}
} // namespace c10
namespace std {
template <typename T>
struct hash<c10::optional<T>> {
typedef c10::invoke_result_t<std::hash<T>, T> result_type;
typedef c10::optional<T> argument_type;
constexpr result_type operator()(argument_type const& arg) const {
return arg ? std::hash<T>{}(*arg) : result_type{};
}
};
template <typename T>
struct hash<c10::optional<T&>> {
typedef typename hash<T>::result_type result_type;
typedef c10::optional<T&> argument_type;
constexpr result_type operator()(argument_type const& arg) const {
return arg ? std::hash<T>{}(*arg) : result_type{};
}
};
} // namespace std
#undef TR2_OPTIONAL_REQUIRES
#undef TR2_OPTIONAL_ASSERTED_EXPRESSION
#undef TR2_OPTIONAL_HOST_CONSTEXPR
C10_CLANG_DIAGNOSTIC_POP()
#endif // C10_UTIL_OPTIONAL_H_