AbeShinzo0708's picture
Upload 2229 files
7e50900
raw
history blame
4.22 kB
// Copyright 2004-present Facebook. All Rights Reserved.
#pragma once
#include <c10/util/ArrayRef.h>
#include <iterator>
#include <numeric>
#include <type_traits>
namespace c10 {
/// Sum of a list of integers; accumulates into the int64_t datatype
template <
typename C,
typename std::enable_if<
std::is_integral<typename C::value_type>::value,
int>::type = 0>
inline int64_t sum_integers(const C& container) {
// std::accumulate infers return type from `init` type, so if the `init` type
// is not large enough to hold the result, computation can overflow. We use
// `int64_t` here to avoid this.
return std::accumulate(
container.begin(), container.end(), static_cast<int64_t>(0));
}
/// Sum of integer elements referred to by iterators; accumulates into the
/// int64_t datatype
template <
typename Iter,
typename std::enable_if<
std::is_integral<
typename std::iterator_traits<Iter>::value_type>::value,
int>::type = 0>
inline int64_t sum_integers(Iter begin, Iter end) {
// std::accumulate infers return type from `init` type, so if the `init` type
// is not large enough to hold the result, computation can overflow. We use
// `int64_t` here to avoid this.
return std::accumulate(begin, end, static_cast<int64_t>(0));
}
/// Product of a list of integers; accumulates into the int64_t datatype
template <
typename C,
typename std::enable_if<
std::is_integral<typename C::value_type>::value,
int>::type = 0>
inline int64_t multiply_integers(const C& container) {
// std::accumulate infers return type from `init` type, so if the `init` type
// is not large enough to hold the result, computation can overflow. We use
// `int64_t` here to avoid this.
return std::accumulate(
container.begin(),
container.end(),
static_cast<int64_t>(1),
std::multiplies<int64_t>());
}
/// Product of integer elements referred to by iterators; accumulates into the
/// int64_t datatype
template <
typename Iter,
typename std::enable_if<
std::is_integral<
typename std::iterator_traits<Iter>::value_type>::value,
int>::type = 0>
inline int64_t multiply_integers(Iter begin, Iter end) {
// std::accumulate infers return type from `init` type, so if the `init` type
// is not large enough to hold the result, computation can overflow. We use
// `int64_t` here to avoid this.
return std::accumulate(
begin, end, static_cast<int64_t>(1), std::multiplies<int64_t>());
}
/// Return product of all dimensions starting from k
/// Returns 1 if k>=dims.size()
template <
typename C,
typename std::enable_if<
std::is_integral<typename C::value_type>::value,
int>::type = 0>
inline int64_t numelements_from_dim(const int k, const C& dims) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(k >= 0);
if (k > static_cast<int>(dims.size())) {
return 1;
} else {
auto cbegin = dims.cbegin();
std::advance(cbegin, k);
return multiply_integers(cbegin, dims.cend());
}
}
/// Product of all dims up to k (not including dims[k])
/// Throws an error if k>dims.size()
template <
typename C,
typename std::enable_if<
std::is_integral<typename C::value_type>::value,
int>::type = 0>
inline int64_t numelements_to_dim(const int k, const C& dims) {
TORCH_INTERNAL_ASSERT(0 <= k);
TORCH_INTERNAL_ASSERT((unsigned)k <= dims.size());
auto cend = dims.cbegin();
std::advance(cend, k);
return multiply_integers(dims.cbegin(), cend);
}
/// Product of all dims between k and l (including dims[k] and excluding
/// dims[l]) k and l may be supplied in either order
template <
typename C,
typename std::enable_if<
std::is_integral<typename C::value_type>::value,
int>::type = 0>
inline int64_t numelements_between_dim(int k, int l, const C& dims) {
TORCH_INTERNAL_ASSERT(0 <= k);
TORCH_INTERNAL_ASSERT(0 <= l);
if (k > l) {
std::swap(k, l);
}
TORCH_INTERNAL_ASSERT((unsigned)l < dims.size());
auto cbegin = dims.cbegin();
auto cend = dims.cbegin();
std::advance(cbegin, k);
std::advance(cend, l);
return multiply_integers(cbegin, cend);
}
} // namespace c10