#pragma once #include #include #include #ifndef AT_PER_OPERATOR_HEADERS #include #else #include #endif namespace at { namespace native { // original values given by raw_*. If an original value is not contiguous, will make a contiguous copy to // the corresponding trimmed_* value. Additionally, if the dtypes of the boundary and input tensor do not // match, will change them to be a common super type so comparisons are done between the same types. // For any trimmed_* tensor, if its outgoing value matches what it was incoming (typically null), then the // corresponding raw_* version should be used since it was already contiguous of the right type. inline void searchsorted_maybe_trim_input_tensors( Tensor& trimmed_input, Tensor& trimmed_boundaries, Tensor& trimmed_sorter, const Tensor& raw_input, const Tensor& raw_boundaries, const Tensor& raw_sorter) { bool in_is_contiguous = raw_input.is_contiguous(); bool bd_is_contiguous = raw_boundaries.is_contiguous(); bool sort_is_contiguous = raw_sorter.is_contiguous(); if (!in_is_contiguous) { TORCH_WARN_ONCE("torch.searchsorted(): input value tensor is non-contiguous, this will lower the performance due " "to extra data copy when converting non-contiguous tensor to contiguous, please use contiguous input value " "tensor if possible. This message will only appear once per program."); trimmed_input = raw_input.contiguous(); } if (!bd_is_contiguous) { TORCH_WARN_ONCE("torch.searchsorted(): boundary tensor is non-contiguous, this will lower the performance due " "to extra data copy when converting non-contiguous tensor to contiguous, please use contiguous boundary " "tensor if possible. This message will only appear once per program."); trimmed_boundaries = raw_boundaries.contiguous(); } if (!sort_is_contiguous) { TORCH_WARN_ONCE("torch.searchsorted(): sorter tensor is non-contiguous, this will lower the performance due " "to extra data copy when converting non-contiguous tensor to contiguous, please use contiguous sorter " "tensor if possible. This message will only appear once per program."); trimmed_sorter = raw_sorter.contiguous(); } if (raw_input.dtype() != raw_boundaries.dtype()) { at::native::ResultTypeState state = {}; state = at::native::update_result_type_state(raw_boundaries, state); state = at::native::update_result_type_state(raw_input, state); ScalarType common_stype = at::native::result_type(state); TORCH_INTERNAL_ASSERT(common_stype != ScalarType::Undefined); if (common_stype != raw_input.scalar_type()) { trimmed_input = in_is_contiguous ? raw_input.to(common_stype) : trimmed_input.to(common_stype); } if (common_stype != raw_boundaries.scalar_type()) { trimmed_boundaries = bd_is_contiguous ? raw_boundaries.to(common_stype) : trimmed_boundaries.to(common_stype); } } } /* unused but needed for internal jagged tensor class */ inline void searchsorted_maybe_trim_input_tensors( Tensor& trimmed_input, Tensor& trimmed_boundaries, const Tensor& raw_input, const Tensor& raw_boundaries) { Tensor trimmed_sorter; Tensor raw_sorter; return searchsorted_maybe_trim_input_tensors( trimmed_input, trimmed_boundaries, trimmed_sorter, raw_input, raw_boundaries, raw_sorter); } inline bool searchsorted_dims_matched_before_last_dim(const Tensor& boundaries, const Tensor& input) { if (boundaries.dim() != input.dim()) { return false; } const auto& dims_bd = boundaries.sizes(); const auto& dims_in = input.sizes(); for (int64_t dim = 0; dim + 1 < boundaries.dim(); ++dim) { if (dims_bd[dim] != dims_in[dim]) { return false; } } return true; } inline Tensor searchsorted_scalar_tensor(const Scalar& scalar, const c10::Device& device) { auto tensor = c10::scalar_to_tensor(scalar, device); // This is to adopt the scalar promotion rules defined in native/TypeProperties.h // So we have the same type promotion rules as binary operations. tensor.unsafeGetTensorImpl()->set_wrapped_number(true); return tensor; } inline void searchsorted_pre_check( const Tensor& boundaries, const Tensor& input, const Tensor& output, const bool out_int32, const bool right, const c10::optional side_opt, const Tensor& sorter) { if (side_opt) { const c10::string_view side = *side_opt; TORCH_CHECK(side == "left" || side == "right", "torch.searchsorted(): side can only be 'left' or 'right' but ", "got ", side); // assume the user has not explicitly set (right=False, side="right") TORCH_CHECK(!right || side == "right", "torch.searchsorted(): side and right can't be set to opposites, got side " "of ", side, " while right was True"); } TORCH_CHECK(boundaries.device() == input.device(), "torch.searchsorted(): boundaries and input value tensors ", "should have same device type, but got boundaries tensor device type ", boundaries.device(), " and input value ", "tensor device type ", input.device()); if (sorter.defined()) { TORCH_CHECK(sorter.device() == boundaries.device(), "torch.searchsorted(): sorter and boundary tensors should ", "have same device type, but got sorter tensor device type ", sorter.device(), " and input value tensor ", "device type ", boundaries.device()); TORCH_CHECK(sorter.sizes() == boundaries.sizes(), "torch.searchsorted(): boundary and sorter must have the same " "size, but got boundary tensor ", boundaries.sizes(), "and got sorter tensor ", sorter.sizes()); TORCH_CHECK(sorter.scalar_type() == ScalarType::Long, "torch.searchsorted(): sorter must be a tensor of long ", "dtype but got dtype ", sorter.scalar_type()); } TORCH_CHECK(input.dim() > 0 || (input.dim() == 0 && input.numel() == 1 && boundaries.dim() == 1), "torch.searchsorted(): input value can be a scalar only when boundaries tensor dimension is 1, but we got ", "boundaries tensor dim(", boundaries.dim(), ") and input value's dim(", input.dim(), ") numel(", input.numel(), ")"); TORCH_CHECK(boundaries.dim() != 0, "torch.searchsorted(): boundaries tensor should have positive dimension, but ", "got 0 dimension"); TORCH_CHECK(boundaries.dim() == 1 || searchsorted_dims_matched_before_last_dim(boundaries, input), "torch.searchsorted(): boundaries tensor should be 1 dimension or the first N-1 dimensions of boundaries tensor ", "and input value tensor must match, but we got boundaries tensor ", boundaries.sizes(), " and input value tensor ", input.sizes()); ScalarType output_dtype = output.scalar_type(); TORCH_CHECK( (output_dtype == ScalarType::Long && !out_int32) || (output_dtype == ScalarType::Int && out_int32), "torch.searchsorted(): output tensor's dtype is wrong, it can only be Int(int32) or Long(int64) depending on ", "whether out_int32 flag is True, but we got output tensor's dtype ", output_dtype, " and out_int32 flag is ", (out_int32 ? "True" : "False")); if (out_int32) { TORCH_CHECK(boundaries.sizes().back() < INT_MAX, "torch.searchsorted(): the size of boundaries' last dimension should be less than ", INT_MAX, ", but we got ", boundaries.sizes().back()); } } }}