|
from typing import Dict, List, Any |
|
from transformers import pipeline |
|
from PIL import Image |
|
import requests |
|
import os |
|
from io import BytesIO |
|
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation |
|
from diffusers import DiffusionPipeline |
|
import torch |
|
from torch import autocast |
|
import base64 |
|
|
|
|
|
auth_token = "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" |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.processor = CLIPSegProcessor.from_pretrained("./clipseg-rd64-refined") |
|
self.model = CLIPSegForImageSegmentation.from_pretrained("./clipseg-rd64-refined") |
|
|
|
self.pipe = DiffusionPipeline.from_pretrained( |
|
"./", |
|
custom_pipeline="text_inpainting", |
|
segmentation_model=self.model, |
|
segmentation_processor=self.processor, |
|
revision="fp16", |
|
torch_dtype=torch.float16, |
|
use_auth_token=auth_token, |
|
) |
|
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
self.pipe = self.pipe.to(self.device) |
|
|
|
def pad_image(self, image): |
|
w, h = image.size |
|
if w == h: |
|
return image |
|
elif w > h: |
|
new_image = Image.new(image.mode, (w, w), (0, 0, 0)) |
|
new_image.paste(image, (0, (w - h) // 2)) |
|
return new_image |
|
else: |
|
new_image = Image.new(image.mode, (h, h), (0, 0, 0)) |
|
new_image.paste(image, ((h - w) // 2, 0)) |
|
return new_image |
|
|
|
|
|
def process_image(self, image, text, prompt): |
|
image = self.pad_image(image) |
|
image = image.resize((512, 512)) |
|
with autocast(self.device): |
|
inpainted_image = self.pipe(image=image, text=text, prompt=prompt).images[0] |
|
return inpainted_image |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str`) |
|
date (:obj: `str`) |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
|
|
inputs = data.pop("inputs", data) |
|
|
|
|
|
image = Image.open(BytesIO(base64.b64decode(inputs['image']))) |
|
class_text = inputs['class_text'] |
|
prompt = inputs['prompt'] |
|
|
|
with autocast(self.device): |
|
image = self.process_image(image, class_text, prompt) |
|
|
|
|
|
buffered = BytesIO() |
|
image.save(buffered, format="JPEG") |
|
img_str = base64.b64encode(buffered.getvalue()) |
|
|
|
|
|
return {"image": img_str.decode()} |
|
|