--- library_name: transformers license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer datasets: - doc_lay_net-small metrics: - precision - recall - f1 - accuracy model-index: - name: Layoutlmv3-finetuned-DocLayNet-test-10-21 results: - task: name: Token Classification type: token-classification dataset: name: doc_lay_net-small type: doc_lay_net-small config: DocLayNet_2022.08_processed_on_2023.01 split: test args: DocLayNet_2022.08_processed_on_2023.01 metrics: - name: Precision type: precision value: 0.37793301092602544 - name: Recall type: recall value: 0.37793301092602544 - name: F1 type: f1 value: 0.37793301092602544 - name: Accuracy type: accuracy value: 0.37793301092602544 --- # Layoutlmv3-finetuned-DocLayNet-test-10-21 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the doc_lay_net-small dataset. It achieves the following results on the evaluation set: - Loss: 2.0791 - Precision: 0.3779 - Recall: 0.3779 - F1: 0.3779 - Accuracy: 0.3779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1