--- library_name: transformers base_model: lilt-xlm-roberta-base tags: - generated_from_trainer datasets: - token-classification metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned-v-1 results: - task: name: Token Classification type: token-classification dataset: name: funsd type: token-classification metrics: - name: Precision type: precision value: 0.5977671451355662 - name: Recall type: recall value: 0.5977671451355662 - name: F1 type: f1 value: 0.5977671451355662 - name: Accuracy type: accuracy value: 0.5977671451355662 --- # finetuned-v-1 This model is a fine-tuned version of [lilt-xlm-roberta-base](https://huggingface.co/lilt-xlm-roberta-base) on the funsd dataset. It achieves the following results on the evaluation set: - Loss: 1.1752 - Precision: 0.5978 - Recall: 0.5978 - F1: 0.5978 - Accuracy: 0.5978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.3986 | 0.5319 | 100 | 1.1752 | 0.5978 | 0.5978 | 0.5978 | 0.5978 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1