{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb916743e40>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682677415490086400, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACesPj9HyfI+UyQEPy3Oyz9WtqE/86YhvjKdDT27DjW/XjsqP1Qnmb9bJ6S/closP+hg3T67564+kV2NPofiNj8z+qc/4QIJv8Xv0z0+9hW+ojp5v+/p4T2uX3U/jg4qv23kj78ojOw+JeTxv25Zgj9OkZe8JPg+P0EI2D5dbIU/CWnWP+td7b4u9BS/ZbqQvXk4Iz/dCDq/PBwSvyBlEUCiyfs+LijlvonpFT/qXCO/Y0WRP9MjQL9feT6/djZkvz7yer/X3RC9VYMSPx4bbr9t5I+/KIzsPiXk8b9uWYI/Ib5LPqvHjb5TPPM+TMdRP3NQEz2vlxQ/hwDOPgRJJb/Q114/uojXvRdEcD+KQr0+j/eUvzoMIsDi0km+u9IJwMTdND7B2rC/oCgCP3iFXT+nbWe/o8qIv6wP274pnj+/1LljP66GCsBDdwc/0WJ7vz/1+L7pXHo+z88MP8mjyz9mbCe/Ctbhv+ARR71cZ3I+R9lLPxeJvz47Fxe/pQWDv7kFXb+q59I/nZ52PH2WET/l1xW/juDIPwAmKj+C1L88RO9qv8H4R75IhtS9McYaQG3kj78ojOw+JeTxv9Fie7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADJfm02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAqUOPvQAAAAAJzADAAAAAAF5etj0AAAAAa4nvPwAAAACkz4+7AAAAAORSAUAAAAAAF/rxugAAAAB8F/6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMhetgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHPD+DsAAAAAPlD+vwAAAAD0iDM9AAAAADM56j8AAAAAC3cGvgAAAAB9DOc/AAAAAL11RD0AAAAA0rDavwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKZ/7zYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID3xfa9AAAAAAte4r8AAAAA5uaiPAAAAAD3ZfM/AAAAAIElwD0AAAAAOGP6PwAAAACXW7S9AAAAALrS7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYC6A2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkjjCvQAAAAD3at2/AAAAACGE7D0AAAAA1dz+PwAAAABFysu9AAAAAKcj+D8AAAAAOCbSvQAAAACM196/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKFJdQTmGM6MAWyUTegDjAF0lEdArddd6cAimnV9lChoBkdAoB0zVJ+UhWgHTegDaAhHQK3chB8hLXd1fZQoaAZHQKFELSEUTL5oB03oA2gIR0Ct3Zh/ZuhsdX2UKGgGR0CgTb+Zof0VaAdN6ANoCEdArd5/4XXRPXV9lChoBkdAoUFISHuZ1GgHTegDaAhHQK3mz2PDHfd1fZQoaAZHQJ50Qqz7di5oB03oA2gIR0Ct7W5e7cwhdX2UKGgGR0ChJjq2BreqaAdN6ANoCEdAre6iJIlMRHV9lChoBkdAmGpm9US7G2gHTegDaAhHQK3vjxmTTv11fZQoaAZHQJr/7SCvovBoB03oA2gIR0Ct9ZguqWC3dX2UKGgGR0Ccs99y925haAdN6ANoCEdArfqYRywOfHV9lChoBkdAoYWmCZnctWgHTegDaAhHQK37qdf9gnd1fZQoaAZHQJ6dTEGZ/kNoB03oA2gIR0Ct/Ip/oaDPdX2UKGgGR0CgqfVmJ3xGaAdN6ANoCEdArgQGwC8vmHV9lChoBkdAoaxEwQDmsGgHTegDaAhHQK4LtR5TqB51fZQoaAZHQKFIxdZ7ojhoB03oA2gIR0CuDMwvHtF8dX2UKGgGR0ChlUxPwd8zaAdN6ANoCEdArg258BuGbnV9lChoBkdAoXUYnQY1pGgHTegDaAhHQK4T4E6kqMF1fZQoaAZHQJ9kayt3fQ9oB03oA2gIR0CuGRpPRArydX2UKGgGR0ChTvjM/yG0aAdN6ANoCEdArhorrJKaonV9lChoBkdAnEEkDuBtlGgHTegDaAhHQK4bEHKwIMV1fZQoaAZHQJm/rGOuJUJoB03oA2gIR0CuIjp3os7NdX2UKGgGR0Ch7v7CSA6NaAdN6ANoCEdArin+qHXVb3V9lChoBkdAomg7Imw7kmgHTegDaAhHQK4rZBcAzYV1fZQoaAZHQKJOsoP07KdoB03oA2gIR0CuLE2BBiTddX2UKGgGR0CbwvEZzgdfaAdN6ANoCEdArjJbQ/oq1HV9lChoBkdAoaYcL+glGGgHTegDaAhHQK43ZQzDXOJ1fZQoaAZHQKIyaLqD9O1oB03oA2gIR0CuOHau4gA7dX2UKGgGR0ChrFzRhMJyaAdN6ANoCEdArjlbIq9XcXV9lChoBkdAoiWYudwvQGgHTegDaAhHQK4/cexwAEN1fZQoaAZHQKLObhUipvRoB03oA2gIR0CuRuLIHTqjdX2UKGgGR0Ch1dbdJrckaAdN6ANoCEdArkh4UL2HtXV9lChoBkdAok/OsT37DWgHTegDaAhHQK5J0SrYGt91fZQoaAZHQKJ4uYMOPNpoB03oA2gIR0CuUCJIDoyLdX2UKGgGR0ChrxfthNM5aAdN6ANoCEdArlUXT7VJ+XV9lChoBkdAop9ToOhCdGgHTegDaAhHQK5WJD+irT91fZQoaAZHQKDkccsDnvFoB03oA2gIR0CuVwjtXxOMdX2UKGgGR0Ch4YdH+ZPVaAdN6ANoCEdArl0UMgEEDHV9lChoBkdAoe4/VTaTOmgHTegDaAhHQK5jh225QP91fZQoaAZHQKGVv1jiGWVoB03oA2gIR0CuZRu6unuRdX2UKGgGR0ChKqyfcvduaAdN6ANoCEdArmZqW7e2u3V9lChoBkdAnMQNtuUD+2gHTegDaAhHQK5toVfu1F91fZQoaAZHQKEoxoK2KEZoB03oA2gIR0CucpIsiB5HdX2UKGgGR0CgpUOqvNeMaAdN6ANoCEdArnOb9n9NvnV9lChoBkdAoX9RNEgGKWgHTegDaAhHQK50gW2w3YN1fZQoaAZHQKH+U7nxJ/ZoB03oA2gIR0Cuenk/jbSJdX2UKGgGR0Chhy6ouPFOaAdN6ANoCEdAroAo4yXUpnV9lChoBkdAoSMgM4LkS2gHTegDaAhHQK6Bo0svqTt1fZQoaAZHQKLjZ2lEZzhoB03oA2gIR0Cugt9mQKa5dX2UKGgGR0CcvwVO9FnaaAdN6ANoCEdArotK15Sm7HV9lChoBkdAol4yyv9tM2gHTegDaAhHQK6Qb86V+ql1fZQoaAZHQKJoNndO6/ZoB03oA2gIR0CukYQZflZHdX2UKGgGR0Ciy1Ef1YhdaAdN6ANoCEdArpJhA6dUbXV9lChoBkdAoLip88cMmWgHTegDaAhHQK6Ygab4Ju51fZQoaAZHQKIa8zjWCmNoB03oA2gIR0CunXd2gWaddX2UKGgGR0ChDh8VxjriaAdN6ANoCEdArp7L4DcM3XV9lChoBkdAoVkn9itq6GgHTegDaAhHQK6gDyDqW1N1fZQoaAZHQKIw6g/1QIloB03oA2gIR0CuqU9wFTvRdX2UKGgGR0CiZThuO0b+aAdN6ANoCEdArq5pMrVe8nV9lChoBkdAhdYjhtLteGgHTegDaAhHQK6vd2JSBLB1fZQoaAZHQKNlQ79Q40doB03oA2gIR0CusFanzg/DdX2UKGgGR0Ci7jT3h4t6aAdN6ANoCEdArrZja24NJHV9lChoBkdAoqENpVS4v2gHTegDaAhHQK67di/fwZx1fZQoaAZHQKJ3CS7oSthoB03oA2gIR0CuvJ2ugYgrdX2UKGgGR0Chfa7lRxcWaAdN6ANoCEdArr2ccfeUIXV9lChoBkdAoctQxN7BwmgHTegDaAhHQK7GVT1CgK51fZQoaAZHQKHs1DAJswdoB03oA2gIR0CuzD8L8aXKdX2UKGgGR0ChiXYzSCvpaAdN6ANoCEdArs1RiNKh+XV9lChoBkdAoa+fbj94vGgHTegDaAhHQK7OK9sabWp1fZQoaAZHQKFZ7dbgTAZoB03oA2gIR0Cu1DjZL7GedX2UKGgGR0Chj7BoduHfaAdN6ANoCEdArtk1qagElnV9lChoBkdAoLpsCYCyQmgHTegDaAhHQK7aQm78Nx51fZQoaAZHQKGFS16Vt41oB03oA2gIR0Cu2yn5SFXadX2UKGgGR0ChOZw+2VmjaAdN6ANoCEdAruL89Mbm2nV9lChoBkdAoW7KBZpztGgHTegDaAhHQK7qIREF4cF1fZQoaAZHQKFuGNHYpUhoB03oA2gIR0Cu6y8pLEk0dX2UKGgGR0Ch2TefI0ZWaAdN6ANoCEdAruwM9ZA6dXV9lChoBkdAoi54bGWD6GgHTegDaAhHQK7yLrcj7hx1fZQoaAZHQKKK2HyEtd1oB03oA2gIR0Cu91bhvR7adX2UKGgGR0CgbWmUwBYFaAdN6ANoCEdArvhtxXGOuXV9lChoBkdAoeGhGz8gp2gHTegDaAhHQK75Zp/wy7B1fZQoaAZHQKGC/336AOJoB03oA2gIR0CvAR8psoDxdX2UKGgGR0CG4GTfR/mUaAdN6ANoCEdArwjLyH2ys3V9lChoBkdAoPxO51/2CmgHTegDaAhHQK8J1QP7N0N1fZQoaAZHQKGN/3RG+bpoB03oA2gIR0CvCre0PYnOdX2UKGgGR0Cher/xMFlkaAdN6ANoCEdArxDpF9a2W3V9lChoBkdAoVlymGdqcmgHTegDaAhHQK8V73AVO9F1fZQoaAZHQKDdhgLJCBxoB03oA2gIR0CvFv3rMTvidX2UKGgGR0CiH2WY4Qz2aAdN6ANoCEdArxfl4JNTLnV9lChoBkdAoJkmE25xzmgHTegDaAhHQK8e+jRlYlp1fZQoaAZHQIDFHDLr5ZdoB03oA2gIR0CvJvMgEEDAdX2UKGgGR0CgzEojW07baAdN6ANoCEdAryhY/u9eyHV9lChoBkdAgUDpdrwfAGgHTegDaAhHQK8pPuDzyz51fZQoaAZHQKFsg/keZG9oB03oA2gIR0CvL1JMQEpzdX2UKGgGR0CiqY9KmKqGaAdN6ANoCEdArzR/5HmRvHV9lChoBkdAoouFtEXtSmgHTegDaAhHQK81mrwvxpd1fZQoaAZHQKCJY/pt78hoB03oA2gIR0CvNobg88s+dX2UKGgGR0ChltL6DXe4aAdN6ANoCEdArzzbN6gM+nV9lChoBkdAoRbT06HTJGgHTegDaAhHQK9ELMHryDt1fZQoaAZHQKIgILDye7NoB03oA2gIR0CvRcXizcASdX2UKGgGR0ChaZ37Lt/naAdN6ANoCEdAr0cshFEy+HVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 15710, "n_steps": 32, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}