Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +97 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.19 +/- 0.16
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:340fd046d624a3ef35edd6de9de1d41eee6d22646fe42421a9b5a445172b8e04
|
3 |
+
size 109602
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb916759870>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fb916743f80>"
|
10 |
+
},
|
11 |
+
"verbose": 0,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
+
"optimizer_kwargs": {
|
19 |
+
"alpha": 0.99,
|
20 |
+
"eps": 1e-05,
|
21 |
+
"weight_decay": 0
|
22 |
+
}
|
23 |
+
},
|
24 |
+
"num_timesteps": 1000064,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1682681953395735640,
|
30 |
+
"learning_rate": 0.00096,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
35 |
+
},
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'collections.OrderedDict'>",
|
38 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAvwFlvkQmhr4z8wQ/aGcJP6fO9z9pc5k9F/G0v8zz0L/MFZi/4/2+v4ijqD97sqM+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9iZDPichdr6Fo6U+m7n/PqUqkz+P7LO+e50dv7v8vb9GZom/2h6zv7htmz+qe4M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC/AWW+RCaGvjPzBD9ZN6g/kyW5v2m2hT9oZwk/p873P2lzmT2p3AK+Yv+BP/xi0j4X8bS/zPPQv8wVmL/OGJI9LeFcP/q/Dj7j/b6/iKOoP3uyoz7gaZ69kBvBPuc+n7+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
39 |
+
"achieved_goal": "[[-0.22363947 -0.2620107 0.5193359 ]\n [ 0.5367341 1.935994 0.07492716]\n [-1.4136075 -1.6324401 -1.1881652 ]\n [-1.492123 1.3174906 0.31972107]]",
|
40 |
+
"desired_goal": "[[ 0.19057831 -0.24036084 0.32351318]\n [ 0.49946293 1.1497389 -0.35141417]\n [-0.6156842 -1.4842752 -1.0734336 ]\n [-1.399379 1.2142859 0.01605018]]",
|
41 |
+
"observation": "[[-0.22363947 -0.2620107 0.5193359 1.3141891 -1.4464592 1.0446292 ]\n [ 0.5367341 1.935994 0.07492716 -0.12779488 1.0156062 0.41091144]\n [-1.4136075 -1.6324401 -1.1881652 0.07133637 0.8628109 0.13940421]\n [-1.492123 1.3174906 0.31972107 -0.07735038 0.3771634 -1.2441071 ]]"
|
42 |
+
},
|
43 |
+
"_last_episode_starts": {
|
44 |
+
":type:": "<class 'numpy.ndarray'>",
|
45 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
46 |
+
},
|
47 |
+
"_last_original_obs": {
|
48 |
+
":type:": "<class 'collections.OrderedDict'>",
|
49 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPw3oPVtwDD4yJoQ+8wQMPRYlKz3QaJ49wD5UPUTBtz2QnKI6pxRBvQLTh7xYglw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
50 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
51 |
+
"desired_goal": "[[ 0.11330651 0.13714735 0.2581039 ]\n [ 0.03418441 0.04178341 0.07734835]\n [ 0.05181766 0.08972409 0.00124063]\n [-0.04713884 -0.01658011 0.05383524]]",
|
52 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
53 |
+
},
|
54 |
+
"_episode_num": 0,
|
55 |
+
"use_sde": true,
|
56 |
+
"sde_sample_freq": -1,
|
57 |
+
"_current_progress_remaining": -6.4000000000064e-05,
|
58 |
+
"_stats_window_size": 100,
|
59 |
+
"ep_info_buffer": {
|
60 |
+
":type:": "<class 'collections.deque'>",
|
61 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7unqjsU277+UhpRSlIwBbJRLMowBdJRHQKTrkI0IkZ91fZQoaAZoCWgPQwhOYaWCiiryv5SGlFKUaBVLMmgWR0Ck61RxDLKWdX2UKGgGaAloD0MIOUayR6jZ97+UhpRSlGgVSzJoFkdApOsN65XlsHV9lChoBmgJaA9DCPq3y37dKfi/lIaUUpRoFUsyaBZHQKTqzmRvFWJ1fZQoaAZoCWgPQwiQaAJFLGL0v5SGlFKUaBVLMmgWR0Ck7HWA5JbudX2UKGgGaAloD0MIsWoQ5nZv+r+UhpRSlGgVSzJoFkdApOw5ZbILgHV9lChoBmgJaA9DCIcahSSzuv6/lIaUUpRoFUsyaBZHQKTr8xFiKBN1fZQoaAZoCWgPQwivsUtUb031v5SGlFKUaBVLMmgWR0Ck67N1ZDArdX2UKGgGaAloD0MI1EM0uoNY9L+UhpRSlGgVSzJoFkdApO1Sh6By0nV9lChoBmgJaA9DCPFo44i1OPa/lIaUUpRoFUsyaBZHQKTtFtF8XvZ1fZQoaAZoCWgPQwgUz9kCQmv3v5SGlFKUaBVLMmgWR0Ck7NDIaLn+dX2UKGgGaAloD0MISIld29vt/L+UhpRSlGgVSzJoFkdApOyRQcghbHV9lChoBmgJaA9DCDqy8stgTPe/lIaUUpRoFUsyaBZHQKTuM2YOUdJ1fZQoaAZoCWgPQwi05sdfWlTzv5SGlFKUaBVLMmgWR0Ck7fdalk6LdX2UKGgGaAloD0MI8MNBQpRv9b+UhpRSlGgVSzJoFkdApO2w1xbSqnV9lChoBmgJaA9DCEVoBBvXP/a/lIaUUpRoFUsyaBZHQKTtcUcn3L51fZQoaAZoCWgPQwjgEoB/StX0v5SGlFKUaBVLMmgWR0Ck7yGWD6FedX2UKGgGaAloD0MIz/kpjgMv9r+UhpRSlGgVSzJoFkdApO7ljPOY6XV9lChoBmgJaA9DCCRCI9i4/vW/lIaUUpRoFUsyaBZHQKTun4A0bcZ1fZQoaAZoCWgPQwhlG7gDdQrzv5SGlFKUaBVLMmgWR0Ck7l/p+tr9dX2UKGgGaAloD0MILuQR3EiZ+L+UhpRSlGgVSzJoFkdApPBcfq5byHV9lChoBmgJaA9DCDfEeM2r+vS/lIaUUpRoFUsyaBZHQKTwIbPyCnR1fZQoaAZoCWgPQwhPPj22ZUD1v5SGlFKUaBVLMmgWR0Ck79vj4pMIdX2UKGgGaAloD0MIoz808+Qa9b+UhpRSlGgVSzJoFkdApO+dHtnf23V9lChoBmgJaA9DCHL75ZMVQ/O/lIaUUpRoFUsyaBZHQKTxu7rcCYF1fZQoaAZoCWgPQwgk0csollv6v5SGlFKUaBVLMmgWR0Ck8YCdJ8OTdX2UKGgGaAloD0MIHm0csRaf+L+UhpRSlGgVSzJoFkdApPE7GxUvPHV9lChoBmgJaA9DCJBoAkUsIvW/lIaUUpRoFUsyaBZHQKTw/Bi1Aqx1fZQoaAZoCWgPQwinWguz0M74v5SGlFKUaBVLMmgWR0Ck8ywRGtp3dX2UKGgGaAloD0MIsmSO5V2197+UhpRSlGgVSzJoFkdApPLxAyEcsHV9lChoBmgJaA9DCI9xxcVRufK/lIaUUpRoFUsyaBZHQKTyqw35vcd1fZQoaAZoCWgPQwid1QJ7TOT2v5SGlFKUaBVLMmgWR0Ck8mwQtjCpdX2UKGgGaAloD0MIbeLkfoei9L+UhpRSlGgVSzJoFkdApPSZXZGrj3V9lChoBmgJaA9DCIY8ghspm/i/lIaUUpRoFUsyaBZHQKT0Xdu5z5p1fZQoaAZoCWgPQwinBwWlaCX9v5SGlFKUaBVLMmgWR0Ck9BfsmfGudX2UKGgGaAloD0MIqMZLN4lB7r+UhpRSlGgVSzJoFkdApPPZQrMC93V9lChoBmgJaA9DCMN/uoEC7/S/lIaUUpRoFUsyaBZHQKT2GGJvYOF1fZQoaAZoCWgPQwg3NjtSfaf4v5SGlFKUaBVLMmgWR0Ck9dzRQaaTdX2UKGgGaAloD0MIpUxqaAMw97+UhpRSlGgVSzJoFkdApPWW3+dbxHV9lChoBmgJaA9DCDJXBtUGZ/G/lIaUUpRoFUsyaBZHQKT1V+BpYcN1fZQoaAZoCWgPQwgg7BSrBuHuv5SGlFKUaBVLMmgWR0Ck95JlBhQWdX2UKGgGaAloD0MI9z3qr1dY9L+UhpRSlGgVSzJoFkdApPdW+TNdJXV9lChoBmgJaA9DCGsRUUzegPi/lIaUUpRoFUsyaBZHQKT3EQxN7Bx1fZQoaAZoCWgPQwhsCmR2Fn30v5SGlFKUaBVLMmgWR0Ck9tIVEd/8dX2UKGgGaAloD0MIEW3H1F1Z8r+UhpRSlGgVSzJoFkdApPkgvHtF8XV9lChoBmgJaA9DCIRLx5xnbPy/lIaUUpRoFUsyaBZHQKT45Sqlxfh1fZQoaAZoCWgPQwhVL7/TZMbvv5SGlFKUaBVLMmgWR0Ck+J9uxbB5dX2UKGgGaAloD0MIRIgrZ+/M8L+UhpRSlGgVSzJoFkdApPhgk5ZKWnV9lChoBmgJaA9DCJs3TgrzXvq/lIaUUpRoFUsyaBZHQKT6qPp6hQF1fZQoaAZoCWgPQwhtxf6ye/L4v5SGlFKUaBVLMmgWR0Ck+m1/tpmFdX2UKGgGaAloD0MIqN+FrdlK8r+UhpRSlGgVSzJoFkdApPooJ1JUYXV9lChoBmgJaA9DCHEDPj+M0PC/lIaUUpRoFUsyaBZHQKT56bjtG/h1fZQoaAZoCWgPQwicNuM0RFX3v5SGlFKUaBVLMmgWR0Ck+7VAqur7dX2UKGgGaAloD0MIm44Abhbv+b+UhpRSlGgVSzJoFkdApPt5bMX7+HV9lChoBmgJaA9DCAagUbr07/m/lIaUUpRoFUsyaBZHQKT7Muez2OB1fZQoaAZoCWgPQwi7mjxlNZ3wv5SGlFKUaBVLMmgWR0Ck+vOSGJvYdX2UKGgGaAloD0MIOShhpu3f7r+UhpRSlGgVSzJoFkdApPyW5lOGkHV9lChoBmgJaA9DCL7BFyZTBfK/lIaUUpRoFUsyaBZHQKT8W4axX4l1fZQoaAZoCWgPQwhh/Z/DfPnzv5SGlFKUaBVLMmgWR0Ck/BUsOG0vdX2UKGgGaAloD0MIzeSbbW5M9b+UhpRSlGgVSzJoFkdApPvVkMCtBHV9lChoBmgJaA9DCKLT824s6Pq/lIaUUpRoFUsyaBZHQKT9hmbsniN1fZQoaAZoCWgPQwhxOslWl1Puv5SGlFKUaBVLMmgWR0Ck/Uo/7iyZdX2UKGgGaAloD0MImpmZmZlZ8b+UhpRSlGgVSzJoFkdApP0D0aqCH3V9lChoBmgJaA9DCM7eGW1V0vi/lIaUUpRoFUsyaBZHQKT8xDx9XtB1fZQoaAZoCWgPQwgx0/avrLT2v5SGlFKUaBVLMmgWR0Ck/mmsV+I/dX2UKGgGaAloD0MI3795ceIr8L+UhpRSlGgVSzJoFkdApP4tkpZwGXV9lChoBmgJaA9DCKzEPCtpBfu/lIaUUpRoFUsyaBZHQKT95wgDA8B1fZQoaAZoCWgPQwjhDWlU4KT4v5SGlFKUaBVLMmgWR0Ck/ae7L+xXdX2UKGgGaAloD0MIIxXGFoLc+L+UhpRSlGgVSzJoFkdApP9RD3M6inV9lChoBmgJaA9DCGA/xAYLZ/a/lIaUUpRoFUsyaBZHQKT/FQJokAx1fZQoaAZoCWgPQwiim/2Bclvyv5SGlFKUaBVLMmgWR0Ck/s5+H8CQdX2UKGgGaAloD0MILzatFAJ59b+UhpRSlGgVSzJoFkdApP6PAXVLBnV9lChoBmgJaA9DCKCLhoxHafO/lIaUUpRoFUsyaBZHQKUAPZW7voh1fZQoaAZoCWgPQwifc7frpWn3v5SGlFKUaBVLMmgWR0ClAAGCI1tPdX2UKGgGaAloD0MIcRx4tdxZ9b+UhpRSlGgVSzJoFkdApP+69TP0I3V9lChoBmgJaA9DCCY6yyxCMfK/lIaUUpRoFUsyaBZHQKT/e2aUiY91fZQoaAZoCWgPQwiuuaP/5Rr4v5SGlFKUaBVLMmgWR0ClASXHaN+9dX2UKGgGaAloD0MINNdppKXy+L+UhpRSlGgVSzJoFkdApQDp9b5dnnV9lChoBmgJaA9DCAg8MIDwofO/lIaUUpRoFUsyaBZHQKUApH8TBZZ1fZQoaAZoCWgPQwh3oE55dGP3v5SGlFKUaBVLMmgWR0ClAGYDklu4dX2UKGgGaAloD0MI8kHPZtXn+L+UhpRSlGgVSzJoFkdApQIMadc0L3V9lChoBmgJaA9DCJqy0w/qIvu/lIaUUpRoFUsyaBZHQKUB0HTqjah1fZQoaAZoCWgPQwivJk9ZTVfvv5SGlFKUaBVLMmgWR0ClAYn3UQTVdX2UKGgGaAloD0MIhPHTuDd/87+UhpRSlGgVSzJoFkdApQFKasp5NXV9lChoBmgJaA9DCOj0vBsLSvS/lIaUUpRoFUsyaBZHQKUC7LPD50t1fZQoaAZoCWgPQwhkWMUbmQf1v5SGlFKUaBVLMmgWR0ClArCa7VawdX2UKGgGaAloD0MINUBpqFEI/7+UhpRSlGgVSzJoFkdApQJqDujRD3V9lChoBmgJaA9DCMy0/SsrjfG/lIaUUpRoFUsyaBZHQKUCKornTy91fZQoaAZoCWgPQwhKehhanRz1v5SGlFKUaBVLMmgWR0ClA8wmVqvedX2UKGgGaAloD0MIpWjlXmBW8b+UhpRSlGgVSzJoFkdApQOQCW/rSnV9lChoBmgJaA9DCNogk4ycxfu/lIaUUpRoFUsyaBZHQKUDSZMtbs51fZQoaAZoCWgPQwiNlgM91Db0v5SGlFKUaBVLMmgWR0ClAwn8sMAndX2UKGgGaAloD0MIxR9FnblH8r+UhpRSlGgVSzJoFkdApQTL7655JXV9lChoBmgJaA9DCJrv4CcO4PW/lIaUUpRoFUsyaBZHQKUEj+nZTQ51fZQoaAZoCWgPQwiDoQ4r3DL1v5SGlFKUaBVLMmgWR0ClBElnIyTIdX2UKGgGaAloD0MI001iEFg58L+UhpRSlGgVSzJoFkdApQQKNS619nV9lChoBmgJaA9DCGfzOAzm7/q/lIaUUpRoFUsyaBZHQKUF3YxtYSx1fZQoaAZoCWgPQwiwHCEDeTb1v5SGlFKUaBVLMmgWR0ClBaGTkhicdX2UKGgGaAloD0MIsvShC+rb6r+UhpRSlGgVSzJoFkdApQVcG3WnTHV9lChoBmgJaA9DCL2o3a8CvPm/lIaUUpRoFUsyaBZHQKUFHJrcj7h1ZS4="
|
62 |
+
},
|
63 |
+
"ep_success_buffer": {
|
64 |
+
":type:": "<class 'collections.deque'>",
|
65 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
66 |
+
},
|
67 |
+
"_n_updates": 7813,
|
68 |
+
"n_steps": 32,
|
69 |
+
"gamma": 0.999,
|
70 |
+
"gae_lambda": 0.9,
|
71 |
+
"ent_coef": 0.0,
|
72 |
+
"vf_coef": 0.4,
|
73 |
+
"max_grad_norm": 0.5,
|
74 |
+
"normalize_advantage": false,
|
75 |
+
"observation_space": {
|
76 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
77 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
78 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
79 |
+
"_shape": null,
|
80 |
+
"dtype": null,
|
81 |
+
"_np_random": null
|
82 |
+
},
|
83 |
+
"action_space": {
|
84 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
85 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
86 |
+
"dtype": "float32",
|
87 |
+
"_shape": [
|
88 |
+
3
|
89 |
+
],
|
90 |
+
"low": "[-1. -1. -1.]",
|
91 |
+
"high": "[1. 1. 1.]",
|
92 |
+
"bounded_below": "[ True True True]",
|
93 |
+
"bounded_above": "[ True True True]",
|
94 |
+
"_np_random": null
|
95 |
+
},
|
96 |
+
"n_envs": 4
|
97 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4eab5d8e583285ec1c7df6af4a9178442735e353dc6db7e326a014a48057ecfc
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c597a6c12fd4ab45dede67a72c8abf1488643c9e95b37dc0bbdf76f147720d8
|
3 |
+
size 46718
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb916759870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb916743f80>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000064, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682681953395735640, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAvwFlvkQmhr4z8wQ/aGcJP6fO9z9pc5k9F/G0v8zz0L/MFZi/4/2+v4ijqD97sqM+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9iZDPichdr6Fo6U+m7n/PqUqkz+P7LO+e50dv7v8vb9GZom/2h6zv7htmz+qe4M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC/AWW+RCaGvjPzBD9ZN6g/kyW5v2m2hT9oZwk/p873P2lzmT2p3AK+Yv+BP/xi0j4X8bS/zPPQv8wVmL/OGJI9LeFcP/q/Dj7j/b6/iKOoP3uyoz7gaZ69kBvBPuc+n7+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.22363947 -0.2620107 0.5193359 ]\n [ 0.5367341 1.935994 0.07492716]\n [-1.4136075 -1.6324401 -1.1881652 ]\n [-1.492123 1.3174906 0.31972107]]", "desired_goal": "[[ 0.19057831 -0.24036084 0.32351318]\n [ 0.49946293 1.1497389 -0.35141417]\n [-0.6156842 -1.4842752 -1.0734336 ]\n [-1.399379 1.2142859 0.01605018]]", "observation": "[[-0.22363947 -0.2620107 0.5193359 1.3141891 -1.4464592 1.0446292 ]\n [ 0.5367341 1.935994 0.07492716 -0.12779488 1.0156062 0.41091144]\n [-1.4136075 -1.6324401 -1.1881652 0.07133637 0.8628109 0.13940421]\n [-1.492123 1.3174906 0.31972107 -0.07735038 0.3771634 -1.2441071 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPw3oPVtwDD4yJoQ+8wQMPRYlKz3QaJ49wD5UPUTBtz2QnKI6pxRBvQLTh7xYglw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.11330651 0.13714735 0.2581039 ]\n [ 0.03418441 0.04178341 0.07734835]\n [ 0.05181766 0.08972409 0.00124063]\n [-0.04713884 -0.01658011 0.05383524]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": -6.4000000000064e-05, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7unqjsU277+UhpRSlIwBbJRLMowBdJRHQKTrkI0IkZ91fZQoaAZoCWgPQwhOYaWCiiryv5SGlFKUaBVLMmgWR0Ck61RxDLKWdX2UKGgGaAloD0MIOUayR6jZ97+UhpRSlGgVSzJoFkdApOsN65XlsHV9lChoBmgJaA9DCPq3y37dKfi/lIaUUpRoFUsyaBZHQKTqzmRvFWJ1fZQoaAZoCWgPQwiQaAJFLGL0v5SGlFKUaBVLMmgWR0Ck7HWA5JbudX2UKGgGaAloD0MIsWoQ5nZv+r+UhpRSlGgVSzJoFkdApOw5ZbILgHV9lChoBmgJaA9DCIcahSSzuv6/lIaUUpRoFUsyaBZHQKTr8xFiKBN1fZQoaAZoCWgPQwivsUtUb031v5SGlFKUaBVLMmgWR0Ck67N1ZDArdX2UKGgGaAloD0MI1EM0uoNY9L+UhpRSlGgVSzJoFkdApO1Sh6By0nV9lChoBmgJaA9DCPFo44i1OPa/lIaUUpRoFUsyaBZHQKTtFtF8XvZ1fZQoaAZoCWgPQwgUz9kCQmv3v5SGlFKUaBVLMmgWR0Ck7NDIaLn+dX2UKGgGaAloD0MISIld29vt/L+UhpRSlGgVSzJoFkdApOyRQcghbHV9lChoBmgJaA9DCDqy8stgTPe/lIaUUpRoFUsyaBZHQKTuM2YOUdJ1fZQoaAZoCWgPQwi05sdfWlTzv5SGlFKUaBVLMmgWR0Ck7fdalk6LdX2UKGgGaAloD0MI8MNBQpRv9b+UhpRSlGgVSzJoFkdApO2w1xbSqnV9lChoBmgJaA9DCEVoBBvXP/a/lIaUUpRoFUsyaBZHQKTtcUcn3L51fZQoaAZoCWgPQwjgEoB/StX0v5SGlFKUaBVLMmgWR0Ck7yGWD6FedX2UKGgGaAloD0MIz/kpjgMv9r+UhpRSlGgVSzJoFkdApO7ljPOY6XV9lChoBmgJaA9DCCRCI9i4/vW/lIaUUpRoFUsyaBZHQKTun4A0bcZ1fZQoaAZoCWgPQwhlG7gDdQrzv5SGlFKUaBVLMmgWR0Ck7l/p+tr9dX2UKGgGaAloD0MILuQR3EiZ+L+UhpRSlGgVSzJoFkdApPBcfq5byHV9lChoBmgJaA9DCDfEeM2r+vS/lIaUUpRoFUsyaBZHQKTwIbPyCnR1fZQoaAZoCWgPQwhPPj22ZUD1v5SGlFKUaBVLMmgWR0Ck79vj4pMIdX2UKGgGaAloD0MIoz808+Qa9b+UhpRSlGgVSzJoFkdApO+dHtnf23V9lChoBmgJaA9DCHL75ZMVQ/O/lIaUUpRoFUsyaBZHQKTxu7rcCYF1fZQoaAZoCWgPQwgk0csollv6v5SGlFKUaBVLMmgWR0Ck8YCdJ8OTdX2UKGgGaAloD0MIHm0csRaf+L+UhpRSlGgVSzJoFkdApPE7GxUvPHV9lChoBmgJaA9DCJBoAkUsIvW/lIaUUpRoFUsyaBZHQKTw/Bi1Aqx1fZQoaAZoCWgPQwinWguz0M74v5SGlFKUaBVLMmgWR0Ck8ywRGtp3dX2UKGgGaAloD0MIsmSO5V2197+UhpRSlGgVSzJoFkdApPLxAyEcsHV9lChoBmgJaA9DCI9xxcVRufK/lIaUUpRoFUsyaBZHQKTyqw35vcd1fZQoaAZoCWgPQwid1QJ7TOT2v5SGlFKUaBVLMmgWR0Ck8mwQtjCpdX2UKGgGaAloD0MIbeLkfoei9L+UhpRSlGgVSzJoFkdApPSZXZGrj3V9lChoBmgJaA9DCIY8ghspm/i/lIaUUpRoFUsyaBZHQKT0Xdu5z5p1fZQoaAZoCWgPQwinBwWlaCX9v5SGlFKUaBVLMmgWR0Ck9BfsmfGudX2UKGgGaAloD0MIqMZLN4lB7r+UhpRSlGgVSzJoFkdApPPZQrMC93V9lChoBmgJaA9DCMN/uoEC7/S/lIaUUpRoFUsyaBZHQKT2GGJvYOF1fZQoaAZoCWgPQwg3NjtSfaf4v5SGlFKUaBVLMmgWR0Ck9dzRQaaTdX2UKGgGaAloD0MIpUxqaAMw97+UhpRSlGgVSzJoFkdApPWW3+dbxHV9lChoBmgJaA9DCDJXBtUGZ/G/lIaUUpRoFUsyaBZHQKT1V+BpYcN1fZQoaAZoCWgPQwgg7BSrBuHuv5SGlFKUaBVLMmgWR0Ck95JlBhQWdX2UKGgGaAloD0MI9z3qr1dY9L+UhpRSlGgVSzJoFkdApPdW+TNdJXV9lChoBmgJaA9DCGsRUUzegPi/lIaUUpRoFUsyaBZHQKT3EQxN7Bx1fZQoaAZoCWgPQwhsCmR2Fn30v5SGlFKUaBVLMmgWR0Ck9tIVEd/8dX2UKGgGaAloD0MIEW3H1F1Z8r+UhpRSlGgVSzJoFkdApPkgvHtF8XV9lChoBmgJaA9DCIRLx5xnbPy/lIaUUpRoFUsyaBZHQKT45Sqlxfh1fZQoaAZoCWgPQwhVL7/TZMbvv5SGlFKUaBVLMmgWR0Ck+J9uxbB5dX2UKGgGaAloD0MIRIgrZ+/M8L+UhpRSlGgVSzJoFkdApPhgk5ZKWnV9lChoBmgJaA9DCJs3TgrzXvq/lIaUUpRoFUsyaBZHQKT6qPp6hQF1fZQoaAZoCWgPQwhtxf6ye/L4v5SGlFKUaBVLMmgWR0Ck+m1/tpmFdX2UKGgGaAloD0MIqN+FrdlK8r+UhpRSlGgVSzJoFkdApPooJ1JUYXV9lChoBmgJaA9DCHEDPj+M0PC/lIaUUpRoFUsyaBZHQKT56bjtG/h1fZQoaAZoCWgPQwicNuM0RFX3v5SGlFKUaBVLMmgWR0Ck+7VAqur7dX2UKGgGaAloD0MIm44Abhbv+b+UhpRSlGgVSzJoFkdApPt5bMX7+HV9lChoBmgJaA9DCAagUbr07/m/lIaUUpRoFUsyaBZHQKT7Muez2OB1fZQoaAZoCWgPQwi7mjxlNZ3wv5SGlFKUaBVLMmgWR0Ck+vOSGJvYdX2UKGgGaAloD0MIOShhpu3f7r+UhpRSlGgVSzJoFkdApPyW5lOGkHV9lChoBmgJaA9DCL7BFyZTBfK/lIaUUpRoFUsyaBZHQKT8W4axX4l1fZQoaAZoCWgPQwhh/Z/DfPnzv5SGlFKUaBVLMmgWR0Ck/BUsOG0vdX2UKGgGaAloD0MIzeSbbW5M9b+UhpRSlGgVSzJoFkdApPvVkMCtBHV9lChoBmgJaA9DCKLT824s6Pq/lIaUUpRoFUsyaBZHQKT9hmbsniN1fZQoaAZoCWgPQwhxOslWl1Puv5SGlFKUaBVLMmgWR0Ck/Uo/7iyZdX2UKGgGaAloD0MImpmZmZlZ8b+UhpRSlGgVSzJoFkdApP0D0aqCH3V9lChoBmgJaA9DCM7eGW1V0vi/lIaUUpRoFUsyaBZHQKT8xDx9XtB1fZQoaAZoCWgPQwgx0/avrLT2v5SGlFKUaBVLMmgWR0Ck/mmsV+I/dX2UKGgGaAloD0MI3795ceIr8L+UhpRSlGgVSzJoFkdApP4tkpZwGXV9lChoBmgJaA9DCKzEPCtpBfu/lIaUUpRoFUsyaBZHQKT95wgDA8B1fZQoaAZoCWgPQwjhDWlU4KT4v5SGlFKUaBVLMmgWR0Ck/ae7L+xXdX2UKGgGaAloD0MIIxXGFoLc+L+UhpRSlGgVSzJoFkdApP9RD3M6inV9lChoBmgJaA9DCGA/xAYLZ/a/lIaUUpRoFUsyaBZHQKT/FQJokAx1fZQoaAZoCWgPQwiim/2Bclvyv5SGlFKUaBVLMmgWR0Ck/s5+H8CQdX2UKGgGaAloD0MILzatFAJ59b+UhpRSlGgVSzJoFkdApP6PAXVLBnV9lChoBmgJaA9DCKCLhoxHafO/lIaUUpRoFUsyaBZHQKUAPZW7voh1fZQoaAZoCWgPQwifc7frpWn3v5SGlFKUaBVLMmgWR0ClAAGCI1tPdX2UKGgGaAloD0MIcRx4tdxZ9b+UhpRSlGgVSzJoFkdApP+69TP0I3V9lChoBmgJaA9DCCY6yyxCMfK/lIaUUpRoFUsyaBZHQKT/e2aUiY91fZQoaAZoCWgPQwiuuaP/5Rr4v5SGlFKUaBVLMmgWR0ClASXHaN+9dX2UKGgGaAloD0MINNdppKXy+L+UhpRSlGgVSzJoFkdApQDp9b5dnnV9lChoBmgJaA9DCAg8MIDwofO/lIaUUpRoFUsyaBZHQKUApH8TBZZ1fZQoaAZoCWgPQwh3oE55dGP3v5SGlFKUaBVLMmgWR0ClAGYDklu4dX2UKGgGaAloD0MI8kHPZtXn+L+UhpRSlGgVSzJoFkdApQIMadc0L3V9lChoBmgJaA9DCJqy0w/qIvu/lIaUUpRoFUsyaBZHQKUB0HTqjah1fZQoaAZoCWgPQwivJk9ZTVfvv5SGlFKUaBVLMmgWR0ClAYn3UQTVdX2UKGgGaAloD0MIhPHTuDd/87+UhpRSlGgVSzJoFkdApQFKasp5NXV9lChoBmgJaA9DCOj0vBsLSvS/lIaUUpRoFUsyaBZHQKUC7LPD50t1fZQoaAZoCWgPQwhkWMUbmQf1v5SGlFKUaBVLMmgWR0ClArCa7VawdX2UKGgGaAloD0MINUBpqFEI/7+UhpRSlGgVSzJoFkdApQJqDujRD3V9lChoBmgJaA9DCMy0/SsrjfG/lIaUUpRoFUsyaBZHQKUCKornTy91fZQoaAZoCWgPQwhKehhanRz1v5SGlFKUaBVLMmgWR0ClA8wmVqvedX2UKGgGaAloD0MIpWjlXmBW8b+UhpRSlGgVSzJoFkdApQOQCW/rSnV9lChoBmgJaA9DCNogk4ycxfu/lIaUUpRoFUsyaBZHQKUDSZMtbs51fZQoaAZoCWgPQwiNlgM91Db0v5SGlFKUaBVLMmgWR0ClAwn8sMAndX2UKGgGaAloD0MIxR9FnblH8r+UhpRSlGgVSzJoFkdApQTL7655JXV9lChoBmgJaA9DCJrv4CcO4PW/lIaUUpRoFUsyaBZHQKUEj+nZTQ51fZQoaAZoCWgPQwiDoQ4r3DL1v5SGlFKUaBVLMmgWR0ClBElnIyTIdX2UKGgGaAloD0MI001iEFg58L+UhpRSlGgVSzJoFkdApQQKNS619nV9lChoBmgJaA9DCGfzOAzm7/q/lIaUUpRoFUsyaBZHQKUF3YxtYSx1fZQoaAZoCWgPQwiwHCEDeTb1v5SGlFKUaBVLMmgWR0ClBaGTkhicdX2UKGgGaAloD0MIsvShC+rb6r+UhpRSlGgVSzJoFkdApQVcG3WnTHV9lChoBmgJaA9DCL2o3a8CvPm/lIaUUpRoFUsyaBZHQKUFHJrcj7h1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7813, "n_steps": 32, "gamma": 0.999, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (777 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.194824713410344, "std_reward": 0.16409524010730234, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-28T12:24:07.648006"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2dde63f57d6a6383716bda70238a61b24a736ca01c3098f32aa945bc69947c85
|
3 |
+
size 2387
|