init
Browse files- .ipynb_checkpoints/configuration-checkpoint.yaml +81 -0
- README.md +29 -0
- SoccerTwos/.placeholder +0 -0
- config.json +1 -0
- run_logs/.placeholder +0 -0
.ipynb_checkpoints/configuration-checkpoint.yaml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
default_settings: null
|
2 |
+
behaviors:
|
3 |
+
SoccerTwos:
|
4 |
+
trainer_type: poca
|
5 |
+
hyperparameters:
|
6 |
+
batch_size: 2048
|
7 |
+
buffer_size: 20480
|
8 |
+
learning_rate: 0.0003
|
9 |
+
beta: 0.005
|
10 |
+
epsilon: 0.2
|
11 |
+
lambd: 0.95
|
12 |
+
num_epoch: 3
|
13 |
+
learning_rate_schedule: constant
|
14 |
+
beta_schedule: constant
|
15 |
+
epsilon_schedule: constant
|
16 |
+
network_settings:
|
17 |
+
normalize: false
|
18 |
+
hidden_units: 512
|
19 |
+
num_layers: 2
|
20 |
+
vis_encode_type: simple
|
21 |
+
memory: null
|
22 |
+
goal_conditioning_type: hyper
|
23 |
+
deterministic: false
|
24 |
+
reward_signals:
|
25 |
+
extrinsic:
|
26 |
+
gamma: 0.99
|
27 |
+
strength: 1.0
|
28 |
+
network_settings:
|
29 |
+
normalize: false
|
30 |
+
hidden_units: 128
|
31 |
+
num_layers: 2
|
32 |
+
vis_encode_type: simple
|
33 |
+
memory: null
|
34 |
+
goal_conditioning_type: hyper
|
35 |
+
deterministic: false
|
36 |
+
init_path: null
|
37 |
+
keep_checkpoints: 5
|
38 |
+
checkpoint_interval: 500000
|
39 |
+
max_steps: 50000000
|
40 |
+
time_horizon: 1000
|
41 |
+
summary_freq: 10000
|
42 |
+
threaded: false
|
43 |
+
self_play:
|
44 |
+
save_steps: 50000
|
45 |
+
team_change: 200000
|
46 |
+
swap_steps: 2000
|
47 |
+
window: 10
|
48 |
+
play_against_latest_model_ratio: 0.5
|
49 |
+
initial_elo: 1200.0
|
50 |
+
behavioral_cloning: null
|
51 |
+
env_settings:
|
52 |
+
env_path: /home/jovyan/work/SoccerTwos.x86_64
|
53 |
+
env_args: null
|
54 |
+
base_port: 5005
|
55 |
+
num_envs: 1
|
56 |
+
num_areas: 1
|
57 |
+
seed: -1
|
58 |
+
max_lifetime_restarts: 10
|
59 |
+
restarts_rate_limit_n: 1
|
60 |
+
restarts_rate_limit_period_s: 60
|
61 |
+
engine_settings:
|
62 |
+
width: 84
|
63 |
+
height: 84
|
64 |
+
quality_level: 5
|
65 |
+
time_scale: 20
|
66 |
+
target_frame_rate: -1
|
67 |
+
capture_frame_rate: 60
|
68 |
+
no_graphics: true
|
69 |
+
environment_parameters: null
|
70 |
+
checkpoint_settings:
|
71 |
+
run_id: SoccerTwos
|
72 |
+
initialize_from: null
|
73 |
+
load_model: false
|
74 |
+
resume: false
|
75 |
+
force: true
|
76 |
+
train_model: false
|
77 |
+
inference: false
|
78 |
+
results_dir: results
|
79 |
+
torch_settings:
|
80 |
+
device: null
|
81 |
+
debug: false
|
README.md
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: ml-agents
|
3 |
+
tags:
|
4 |
+
- SoccerTwos
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- ML-Agents-SoccerTwos
|
8 |
+
---
|
9 |
+
|
10 |
+
# **poca** Agent playing **SoccerTwos**
|
11 |
+
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
|
12 |
+
|
13 |
+
## Usage (with ML-Agents)
|
14 |
+
The Documentation: https://github.com/huggingface/ml-agents#get-started
|
15 |
+
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
|
16 |
+
|
17 |
+
|
18 |
+
### Resume the training
|
19 |
+
```
|
20 |
+
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
|
21 |
+
```
|
22 |
+
### Watch your Agent play
|
23 |
+
You can watch your agent **playing directly in your browser:**.
|
24 |
+
|
25 |
+
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
|
26 |
+
2. Step 1: Find your model_id: Actuary/poca-SoccerTwos
|
27 |
+
3. Step 2: Select your *.nn /*.onnx file
|
28 |
+
4. Click on Watch the agent play 👀
|
29 |
+
|
SoccerTwos/.placeholder
DELETED
File without changes
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default_settings": null, "behaviors": {"SoccerTwos": {"trainer_type": "poca", "hyperparameters": {"batch_size": 2048, "buffer_size": 20480, "learning_rate": 0.0003, "beta": 0.005, "epsilon": 0.2, "lambd": 0.95, "num_epoch": 3, "learning_rate_schedule": "constant", "beta_schedule": "constant", "epsilon_schedule": "constant"}, "network_settings": {"normalize": false, "hidden_units": 512, "num_layers": 2, "vis_encode_type": "simple", "memory": null, "goal_conditioning_type": "hyper", "deterministic": false}, "reward_signals": {"extrinsic": {"gamma": 0.99, "strength": 1.0, "network_settings": {"normalize": false, "hidden_units": 128, "num_layers": 2, "vis_encode_type": "simple", "memory": null, "goal_conditioning_type": "hyper", "deterministic": false}}}, "init_path": null, "keep_checkpoints": 5, "checkpoint_interval": 500000, "max_steps": 50000000, "time_horizon": 1000, "summary_freq": 10000, "threaded": false, "self_play": {"save_steps": 50000, "team_change": 200000, "swap_steps": 2000, "window": 10, "play_against_latest_model_ratio": 0.5, "initial_elo": 1200.0}, "behavioral_cloning": null}}, "env_settings": {"env_path": "/home/jovyan/work/SoccerTwos.x86_64", "env_args": null, "base_port": 5005, "num_envs": 1, "num_areas": 1, "seed": -1, "max_lifetime_restarts": 10, "restarts_rate_limit_n": 1, "restarts_rate_limit_period_s": 60}, "engine_settings": {"width": 84, "height": 84, "quality_level": 5, "time_scale": 20, "target_frame_rate": -1, "capture_frame_rate": 60, "no_graphics": true}, "environment_parameters": null, "checkpoint_settings": {"run_id": "SoccerTwos", "initialize_from": null, "load_model": false, "resume": false, "force": true, "train_model": false, "inference": false, "results_dir": "results"}, "torch_settings": {"device": null}, "debug": false}
|
run_logs/.placeholder
DELETED
File without changes
|