Fischerboot commited on
Commit
051c3ba
1 Parent(s): 380b081

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -129
README.md CHANGED
@@ -1,136 +1,15 @@
1
  ---
2
- base_model: Undi95/Meta-Llama-3-8B-hf
3
- library_name: peft
4
- license: other
5
- tags:
6
- - generated_from_trainer
7
- model-index:
8
- - name: outputs/qlora-out
9
- results: []
10
  ---
 
11
 
12
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
- should probably proofread and complete it, then remove this comment. -->
14
 
15
- [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
16
- <details><summary>See axolotl config</summary>
17
 
18
- axolotl version: `0.4.1`
19
- ```yaml
20
- base_model: Undi95/Meta-Llama-3-8B-hf
21
- model_type: AutoModelForCausalLM
22
- tokenizer_type: AutoTokenizer
23
 
24
- load_in_8bit: false
25
- load_in_4bit: true
26
- strict: false
27
 
28
- datasets:
29
- - path: Fischerboot/freedom-rp-alpaca-shortend
30
- type: alpaca
31
- - path: Fischerboot/yannik-data
32
- type: alpaca
33
- dataset_prepared_path:
34
- val_set_size: 0
35
- output_dir: ./outputs/qlora-out
36
-
37
- adapter: qlora
38
- lora_model_dir:
39
-
40
- sequence_len: 4096
41
- sample_packing: true
42
- pad_to_sequence_len: true
43
-
44
- lora_r: 32
45
- lora_alpha: 16
46
- lora_dropout: 0.05
47
- lora_target_modules:
48
- lora_target_linear: true
49
- lora_fan_in_fan_out:
50
-
51
- wandb_project:
52
- wandb_entity:
53
- wandb_watch:
54
- wandb_name:
55
- wandb_log_model:
56
-
57
- gradient_accumulation_steps: 4
58
- micro_batch_size: 2
59
- num_epochs: 4
60
- optimizer: paged_adamw_32bit
61
- lr_scheduler: cosine
62
- learning_rate: 0.0002
63
-
64
- train_on_inputs: false
65
- group_by_length: false
66
- bf16: auto
67
- fp16:
68
- tf32: false
69
-
70
- gradient_checkpointing: true
71
- early_stopping_patience:
72
- resume_from_checkpoint:
73
- local_rank:
74
- logging_steps: 1
75
- xformers_attention:
76
- flash_attention: true
77
-
78
- warmup_steps: 10
79
- evals_per_epoch: 2
80
- eval_table_size:
81
- saves_per_epoch: 1
82
- debug:
83
- deepspeed:
84
- weight_decay: 0.0
85
- fsdp:
86
- fsdp_config:
87
- special_tokens:
88
- pad_token: "<|end_of_text|>"
89
-
90
- ```
91
-
92
- </details><br>
93
-
94
- # outputs/qlora-out
95
-
96
- This model is a fine-tuned version of [Undi95/Meta-Llama-3-8B-hf](https://huggingface.co/Undi95/Meta-Llama-3-8B-hf) on the None dataset.
97
-
98
- ## Model description
99
-
100
- More information needed
101
-
102
- ## Intended uses & limitations
103
-
104
- More information needed
105
-
106
- ## Training and evaluation data
107
-
108
- More information needed
109
-
110
- ## Training procedure
111
-
112
- ### Training hyperparameters
113
-
114
- The following hyperparameters were used during training:
115
- - learning_rate: 0.0002
116
- - train_batch_size: 2
117
- - eval_batch_size: 2
118
- - seed: 42
119
- - gradient_accumulation_steps: 4
120
- - total_train_batch_size: 8
121
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
122
- - lr_scheduler_type: cosine
123
- - lr_scheduler_warmup_steps: 10
124
- - num_epochs: 4
125
-
126
- ### Training results
127
-
128
-
129
-
130
- ### Framework versions
131
-
132
- - PEFT 0.11.1
133
- - Transformers 4.42.3
134
- - Pytorch 2.1.2+cu118
135
- - Datasets 2.19.1
136
- - Tokenizers 0.19.1
 
1
  ---
2
+ license: llama3
 
 
 
 
 
 
 
3
  ---
4
+ ![download.png](https://raw.githubusercontent.com/Fischherboot/Aculi/main/watermark-no-bg.png)
5
 
6
+ # Llama3-8B-Script-Writer (v1)
 
7
 
8
+ This Model is based on [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B)
 
9
 
10
+ It was a Request from my friend, no idea if its good.
 
 
 
 
11
 
12
+ Model will get uplaoded soon.
 
 
13
 
14
+ ### Have fun
15
+ ### <u>This is NOT an instruct Model!</u>