File size: 1,605 Bytes
7bacca5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---

library_name: transformers
license: apache-2.0
base_model: openai/whisper-large
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-small-obs-dataset
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-small-obs-dataset

This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3014
- Wer: 87.4401

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05

- train_batch_size: 16

- eval_batch_size: 8

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- lr_scheduler_warmup_steps: 80
- training_steps: 200

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch  | Step | Validation Loss | Wer      |

|:-------------:|:------:|:----:|:---------------:|:--------:|

| 1.1319        | 1.0417 | 100  | 1.3716          | 119.4252 |

| 0.8298        | 2.0833 | 200  | 1.3014          | 87.4401  |





### Framework versions



- Transformers 4.44.2

- Pytorch 2.4.1+cu124

- Datasets 2.21.0

- Tokenizers 0.19.1