--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-obs-dataset results: [] --- # whisper-small-obs-dataset This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3014 - Wer: 87.4401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 80 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.1319 | 1.0417 | 100 | 1.3716 | 119.4252 | | 0.8298 | 2.0833 | 200 | 1.3014 | 87.4401 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu124 - Datasets 2.21.0 - Tokenizers 0.19.1