File size: 2,309 Bytes
b123463 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
base_model: DeepPavlov/rubert-base-cased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: rubert-base-cased-1-third
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# rubert-base-cased-1-third
This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2935
- Accuracy: 0.919
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.6641 | 1.0 | 1500 | 0.3723 | 0.9029 |
| 0.285 | 2.0 | 3000 | 0.3000 | 0.9154 |
| 0.1981 | 3.0 | 4500 | 0.2935 | 0.919 |
| 0.1488 | 4.0 | 6000 | 0.3073 | 0.9194 |
| 0.1139 | 5.0 | 7500 | 0.3401 | 0.9177 |
| 0.0902 | 6.0 | 9000 | 0.3662 | 0.9166 |
| 0.077 | 7.0 | 10500 | 0.3955 | 0.9175 |
| 0.0633 | 8.0 | 12000 | 0.4064 | 0.916 |
| 0.0548 | 9.0 | 13500 | 0.4286 | 0.9173 |
| 0.0487 | 10.0 | 15000 | 0.4429 | 0.916 |
| 0.0405 | 11.0 | 16500 | 0.4777 | 0.9195 |
| 0.0367 | 12.0 | 18000 | 0.4836 | 0.9202 |
| 0.0314 | 13.0 | 19500 | 0.4854 | 0.9194 |
| 0.0271 | 14.0 | 21000 | 0.5018 | 0.9175 |
| 0.023 | 15.0 | 22500 | 0.5123 | 0.9191 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
|