Text Generation
Transformers
PyTorch
Safetensors
English
llama
finance
Eval Results
text-generation-inference
Inference Endpoints
AdaptLLM commited on
Commit
d6fd77c
·
1 Parent(s): c9c7d95
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -23,7 +23,7 @@ For example, to chat with the finance model:
23
  from transformers import AutoModelForCausalLM, AutoTokenizer
24
 
25
  model = AutoModelForCausalLM.from_pretrained("AdaptLLM/finance-chat")
26
- tokenizer = AutoTokenizer.from_pretrained("AdaptLLM/finance-chat")
27
 
28
  # Put your input here:
29
  user_input = '''Use this fact to answer the question: Title of each class Trading Symbol(s) Name of each exchange on which registered
@@ -42,7 +42,7 @@ inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).input_
42
  outputs = model.generate(input_ids=inputs, max_length=4096)[0]
43
 
44
  answer_start = int(inputs.shape[-1])
45
- pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True, do_sample=False)
46
 
47
  print(f'### User Input:\n{user_input}\n\n### Assistant Output:\n{pred}')
48
  ```
 
23
  from transformers import AutoModelForCausalLM, AutoTokenizer
24
 
25
  model = AutoModelForCausalLM.from_pretrained("AdaptLLM/finance-chat")
26
+ tokenizer = AutoTokenizer.from_pretrained("AdaptLLM/finance-chat", use_fast=False)
27
 
28
  # Put your input here:
29
  user_input = '''Use this fact to answer the question: Title of each class Trading Symbol(s) Name of each exchange on which registered
 
42
  outputs = model.generate(input_ids=inputs, max_length=4096)[0]
43
 
44
  answer_start = int(inputs.shape[-1])
45
+ pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True)
46
 
47
  print(f'### User Input:\n{user_input}\n\n### Assistant Output:\n{pred}')
48
  ```