--- language: - en license: llama2 tags: - finance datasets: - Open-Orca/OpenOrca - GAIR/lima - WizardLM/WizardLM_evol_instruct_V2_196k metrics: - accuracy pipeline_tag: text-generation model-index: - name: finance-chat results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 53.75 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 76.6 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 50.16 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 44.54 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 75.69 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 18.8 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat name: Open LLM Leaderboard --- # Adapting LLMs to Domains via Continual Pre-Training (ICLR 2024) This repo contains the domain-specific chat model developed from **LLaMA-2-Chat-7B**, using the method in our paper [Adapting Large Language Models via Reading Comprehension](https://huggingface.co/papers/2309.09530). We explore **continued pre-training on domain-specific corpora** for large language models. While this approach enriches LLMs with domain knowledge, it significantly hurts their prompting ability for question answering. Inspired by human learning via reading comprehension, we propose a simple method to **transform large-scale pre-training corpora into reading comprehension texts**, consistently improving prompting performance across tasks in biomedicine, finance, and law domains. **Our 7B model competes with much larger domain-specific models like BloombergGPT-50B**. ### [2024/11/29] 🤗 Introduce the multimodal version of AdaptLLM at [AdaMLLM](https://huggingface.co/papers/2411.19930), for adapting MLLMs to domains 🤗 **************************** **Updates** **************************** * 2024/11/29: Released [AdaMLLM](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains) for adapting MLLMs to domains * 2024/9/20: Our [research paper for Instruction-Pretrain](https://huggingface.co/papers/2406.14491) has been accepted by EMNLP 2024 * 2024/8/29: Updated [guidelines](https://huggingface.co/datasets/AdaptLLM/finance-tasks) on evaluating any 🤗Huggingface models on the domain-specific tasks * 2024/6/22: Released the [benchmarking code](https://github.com/microsoft/LMOps/tree/main/adaptllm) * 2024/6/21: Released the general version of AdaptLLM at [Instruction-Pretrain](https://huggingface.co/instruction-pretrain) * 2024/4/2: Released the [raw data splits (train and test)](https://huggingface.co/datasets/AdaptLLM/ConvFinQA) of all the evaluation datasets * 2024/1/16: Our [research paper for AdaptLLM](https://huggingface.co/papers/2309.09530) has been accepted by ICLR 2024 * 2023/12/19: Released our [13B base models](https://huggingface.co/AdaptLLM/law-LLM-13B) developed from LLaMA-1-13B * 2023/12/8: Released our [chat models](https://huggingface.co/AdaptLLM/law-chat) developed from LLaMA-2-Chat-7B * 2023/9/18: Released our [paper](https://huggingface.co/papers/2309.09530), [code](https://github.com/microsoft/LMOps), [data](https://huggingface.co/datasets/AdaptLLM/law-tasks), and [base models](https://huggingface.co/AdaptLLM/law-LLM) developed from LLaMA-1-7B ## 1. Domain-Specific Models ### LLaMA-1-7B In our paper, we develop three domain-specific models from LLaMA-1-7B, which are also available in Huggingface: [Biomedicine-LLM](https://huggingface.co/AdaptLLM/medicine-LLM), [Finance-LLM](https://huggingface.co/AdaptLLM/finance-LLM) and [Law-LLM](https://huggingface.co/AdaptLLM/law-LLM), the performances of our AdaptLLM compared to other domain-specific LLMs are:

### LLaMA-1-13B Moreover, we scale up our base model to LLaMA-1-13B to see if **our method is similarly effective for larger-scale models**, and the results are consistently positive too: [Biomedicine-LLM-13B](https://huggingface.co/AdaptLLM/medicine-LLM-13B), [Finance-LLM-13B](https://huggingface.co/AdaptLLM/finance-LLM-13B) and [Law-LLM-13B](https://huggingface.co/AdaptLLM/law-LLM-13B). ### LLaMA-2-Chat Our method is also effective for aligned models! LLaMA-2-Chat requires a [specific data format](https://huggingface.co/blog/llama2#how-to-prompt-llama-2), and our **reading comprehension can perfectly fit the data format** by transforming the reading comprehension into a multi-turn conversation. We have also open-sourced chat models in different domains: [Biomedicine-Chat](https://huggingface.co/AdaptLLM/medicine-chat), [Finance-Chat](https://huggingface.co/AdaptLLM/finance-chat) and [Law-Chat](https://huggingface.co/AdaptLLM/law-chat) For example, to chat with the finance-chat model: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("AdaptLLM/finance-chat") tokenizer = AutoTokenizer.from_pretrained("AdaptLLM/finance-chat") # Put your input here: user_input = '''Use this fact to answer the question: Title of each class Trading Symbol(s) Name of each exchange on which registered Common Stock, Par Value $.01 Per Share MMM New York Stock Exchange MMM Chicago Stock Exchange, Inc. 1.500% Notes due 2026 MMM26 New York Stock Exchange 1.750% Notes due 2030 MMM30 New York Stock Exchange 1.500% Notes due 2031 MMM31 New York Stock Exchange Which debt securities are registered to trade on a national securities exchange under 3M's name as of Q2 of 2023?''' # Apply the prompt template and system prompt of LLaMA-2-Chat demo for chat models (NOTE: NO prompt template is required for base models!) our_system_prompt = "\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n" # Please do NOT change this prompt = f"[INST] <>{our_system_prompt}<>\n\n{user_input} [/INST]" # # NOTE: # # If you want to apply your own system prompt, please integrate it into the instruction part following our system prompt like this: # your_system_prompt = "Please, check if the answer can be inferred from the pieces of context provided." # prompt = f"[INST] <>{our_system_prompt}<>\n\n{your_system_prompt}\n{user_input} [/INST]" inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).input_ids.to(model.device) outputs = model.generate(input_ids=inputs, max_length=4096)[0] answer_start = int(inputs.shape[-1]) pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True) print(pred) ``` ### LLaMA-3-8B (💡New!) In our recent research on [Instruction-Pretrain](https://huggingface.co/papers/2406.14491), we developed a context-based instruction synthesizer to augment the raw corpora with instruction-response pairs, **enabling Llama3-8B to be comparable to or even outperform Llama3-70B**: [Finance-Llama3-8B](https://huggingface.co/instruction-pretrain/finance-Llama3-8B), [Biomedicine-Llama3-8B](https://huggingface.co/instruction-pretrain/medicine-Llama3-8B). ## 2. Domain-Specific Tasks To easily reproduce our prompting results, we have uploaded the filled-in zero/few-shot input instructions and output completions of the test each domain-specific task: [biomedicine-tasks](https://huggingface.co/datasets/AdaptLLM/medicine-tasks), [finance-tasks](https://huggingface.co/datasets/AdaptLLM/finance-tasks), and [law-tasks](https://huggingface.co/datasets/AdaptLLM/law-tasks). Note: those filled-in instructions are specifically tailored for models before alignment and do NOT fit for the specific data format required for chat models. ## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_AdaptLLM__finance-chat) | Metric |Value| |---------------------------------|----:| |Avg. |53.26| |AI2 Reasoning Challenge (25-Shot)|53.75| |HellaSwag (10-Shot) |76.60| |MMLU (5-Shot) |50.16| |TruthfulQA (0-shot) |44.54| |Winogrande (5-shot) |75.69| |GSM8k (5-shot) |18.80| ## Citation If you find our work helpful, please cite us: ```bibtex @inproceedings{ cheng2024adapting, title={Adapting Large Language Models via Reading Comprehension}, author={Daixuan Cheng and Shaohan Huang and Furu Wei}, booktitle={The Twelfth International Conference on Learning Representations}, year={2024}, url={https://openreview.net/forum?id=y886UXPEZ0} } ```