Upload model
Browse files- README.md +40 -0
- adapter_config.json +25 -0
- head_config.json +18 -0
- pytorch_adapter.bin +3 -0
- pytorch_model_head.bin +3 -0
README.md
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- t5
|
4 |
+
- adapter-transformers
|
5 |
+
datasets:
|
6 |
+
- amazon_polarity
|
7 |
+
---
|
8 |
+
|
9 |
+
# Adapter `lenglaender/xlm-roberta-base-lora-lm-amazon-polarity` for google-t5/t5-base
|
10 |
+
|
11 |
+
An [adapter](https://adapterhub.ml) for the `google-t5/t5-base` model that was trained on the [amazon_polarity](https://huggingface.co/datasets/amazon_polarity/) dataset and includes a prediction head for seq2seq lm.
|
12 |
+
|
13 |
+
This adapter was created for usage with the **[Adapters](https://github.com/Adapter-Hub/adapters)** library.
|
14 |
+
|
15 |
+
## Usage
|
16 |
+
|
17 |
+
First, install `adapters`:
|
18 |
+
|
19 |
+
```
|
20 |
+
pip install -U adapters
|
21 |
+
```
|
22 |
+
|
23 |
+
Now, the adapter can be loaded and activated like this:
|
24 |
+
|
25 |
+
```python
|
26 |
+
from adapters import AutoAdapterModel
|
27 |
+
|
28 |
+
model = AutoAdapterModel.from_pretrained("google-t5/t5-base")
|
29 |
+
adapter_name = model.load_adapter("lenglaender/xlm-roberta-base-lora-lm-amazon-polarity", source="hf", set_active=True)
|
30 |
+
```
|
31 |
+
|
32 |
+
## Architecture & Training
|
33 |
+
|
34 |
+
LoRA has r=8 and alpha=8
|
35 |
+
|
36 |
+
## Evaluation results
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
## Citation
|
adapter_config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": {
|
3 |
+
"alpha": 8,
|
4 |
+
"architecture": "lora",
|
5 |
+
"attn_matrices": [
|
6 |
+
"q",
|
7 |
+
"v"
|
8 |
+
],
|
9 |
+
"composition_mode": "add",
|
10 |
+
"dropout": 0.0,
|
11 |
+
"init_weights": "lora",
|
12 |
+
"intermediate_lora": false,
|
13 |
+
"leave_out": [],
|
14 |
+
"output_lora": false,
|
15 |
+
"r": 8,
|
16 |
+
"selfattn_lora": true,
|
17 |
+
"use_gating": false
|
18 |
+
},
|
19 |
+
"hidden_size": 768,
|
20 |
+
"model_class": "T5AdapterModel",
|
21 |
+
"model_name": "google-t5/t5-base",
|
22 |
+
"model_type": "t5",
|
23 |
+
"name": "amazon_lm",
|
24 |
+
"version": "0.2.0"
|
25 |
+
}
|
head_config.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": {
|
3 |
+
"activation_function": null,
|
4 |
+
"bias": false,
|
5 |
+
"head_type": "seq2seq_lm",
|
6 |
+
"label2id": null,
|
7 |
+
"layer_norm": false,
|
8 |
+
"layers": 1,
|
9 |
+
"shift_labels": false,
|
10 |
+
"vocab_size": 32128
|
11 |
+
},
|
12 |
+
"hidden_size": 768,
|
13 |
+
"model_class": "T5AdapterModel",
|
14 |
+
"model_name": "google-t5/t5-base",
|
15 |
+
"model_type": "t5",
|
16 |
+
"name": "amazon_lm",
|
17 |
+
"version": "0.2.0"
|
18 |
+
}
|
pytorch_adapter.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39f017e242713e83ed3e70d2256103e1103b565ca91807ffb7f202bccec7d79f
|
3 |
+
size 3590962
|
pytorch_model_head.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1512ab439ca45de32ca6b614812a8085145b7cb2d03eac7fcfcd2248d8ef5ad
|
3 |
+
size 98698515
|