Safetensors
English
distilbert
phishing_url
adnanaman commited on
Commit
a5ee679
·
verified ·
1 Parent(s): d796204

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -2
README.md CHANGED
@@ -44,17 +44,19 @@ This model can be loaded and used with Hugging Face's `transformers` library:
44
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
45
  import torch
46
 
47
- # Load the model and tokenizer
48
  tokenizer = AutoTokenizer.from_pretrained("your-username/DistilBERT-PhishGuard")
49
  model = AutoModelForSequenceClassification.from_pretrained("your-username/DistilBERT-PhishGuard")
50
 
51
- # Sample URL for classification
52
  url = "http://example.com"
53
  inputs = tokenizer(url, return_tensors="pt", truncation=True, max_length=256)
54
  outputs = model(**inputs)
55
  predictions = torch.argmax(outputs.logits, dim=-1)
56
  print("Prediction:", "Phishing" if predictions.item() == 1 else "Safe")
57
 
 
 
58
  ## Performance
59
  The model achieves high accuracy across different chunks of training data, with performance metrics above 98% accuracy and an AUC close to or at 1.00 in later stages. This indicates robust and reliable phishing detection across varied datasets.
60
 
 
44
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
45
  import torch
46
 
47
+ #Load the model and tokenizer
48
  tokenizer = AutoTokenizer.from_pretrained("your-username/DistilBERT-PhishGuard")
49
  model = AutoModelForSequenceClassification.from_pretrained("your-username/DistilBERT-PhishGuard")
50
 
51
+ #Sample URL for classification
52
  url = "http://example.com"
53
  inputs = tokenizer(url, return_tensors="pt", truncation=True, max_length=256)
54
  outputs = model(**inputs)
55
  predictions = torch.argmax(outputs.logits, dim=-1)
56
  print("Prediction:", "Phishing" if predictions.item() == 1 else "Safe")
57
 
58
+ ```
59
+
60
  ## Performance
61
  The model achieves high accuracy across different chunks of training data, with performance metrics above 98% accuracy and an AUC close to or at 1.00 in later stages. This indicates robust and reliable phishing detection across varied datasets.
62