File size: 1,435 Bytes
f1a23fa
7346d7c
 
 
 
 
 
 
 
f1a23fa
 
7346d7c
 
f1a23fa
7346d7c
f1a23fa
7346d7c
 
 
f1a23fa
7346d7c
f1a23fa
7346d7c
f1a23fa
7346d7c
f1a23fa
7346d7c
f1a23fa
7346d7c
f1a23fa
7346d7c
f1a23fa
7346d7c
f1a23fa
7346d7c
f1a23fa
7346d7c
 
 
 
 
 
 
 
 
 
 
f1a23fa
7346d7c
f1a23fa
7346d7c
 
 
f1a23fa
 
7346d7c
f1a23fa
7346d7c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: microsoft/Phi-3-mini-128k-instruct
model-index:
- name: testm
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# testm

This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7111

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1
- training_steps: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.7307        | 1.0   | 10   | 0.7111          |


### Framework versions

- PEFT 0.11.0
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1