AdonaiHS commited on
Commit
d2c9612
·
1 Parent(s): 1ae5ad3

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1020.35 +/- 127.50
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fb79bd009e5af07fcbcf81794babffcc06941970273f88f912ee285a6a931a7
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4831315c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4831315ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4831315d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4831315dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f4831315e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f4831315ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4831315f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4831319040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f48313190d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4831319160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f48313191f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4831319280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f48313127b0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 1000000,
63
+ "_total_timesteps": 1000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1678076992808272879,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGzqRj5Sofm/YOnWv7B2P78c/U6/0jnkPuOz2z3LsA6+9SeeP+OLQrwTDLO+7Q4gvY9Afz5+Gw2+4ugCPUitA75mpkE/hmI0QJvHPD04HW4/EtUUP3AskD+rhtg9Al/ivJm3zz5YFNU+7wzfv2LQMD+ydQE+vX+Pv92iJb5dk+W/lf12v+SHcz5KZSM+hAg5vl4Kuz/VPcK9EtWyvnFJlrzM5vM+5eeaPlZ20DzMR9M77x1jPxq6ekBeciQ/fjsxPbeEOT5I/9M/enmrPf3QLb2Zt88+WBTVPu8M379i0DA/62PWPvVFAcCiuxPAxsXQP/xGG79trle/f05SPYMUl72Cq70/30zVvuiXsr7wIES93RQuvr1xob5OEW+80ZWVviEYHz/7hBA/jrn3vtzVrD+L6tU+89UfQEZl070R7UtAmbfPPlgU1T6O6BI/H1O5vx4rFj+AScm/Bf04v7KKQUCMY4XAnn4TvjtrID7nb7W+it6DP3aphL+caUA9pzklvi4x4T6j5N++Nc4Dvr6vTUAY/V696vQxQDQuCj+JthtAghIOP/qSGUByF+I+ALiwP5m3zz5YFNU+7wzfv2LQMD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAUYA02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACACSXXPQAAAADOJ/O/AAAAAPBYCz4AAAAAW+L+PwAAAABJ4DY9AAAAAL/t3z8AAAAAj6QtvAAAAACVpdy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATRQDNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBhs/LwAAAAAx/X2vwAAAACy1D89AAAAAByR+j8AAAAAXQFTvQAAAADYUv0/AAAAAEfYMzsAAAAABxXbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKvyGTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB93sw9AAAAACsy+b8AAAAAH2ynPQAAAABK5e4/AAAAAK8H0j0AAAAAHe0AQAAAAAA4jZm8AAAAAE/t5L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC9Dx01AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASeIiuwAAAADfC/2/AAAAAHWRv70AAAAAfL/8PwAAAACVQo08AAAAAEfQ5j8AAAAAhSLKvQAAAABfyOm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI7kKWom5UeMAWyUTegDjAF0lEdAuAfch5gPVnV9lChoBkdAkEKmCNCJGmgHTegDaAhHQLgIkQAMlTp1fZQoaAZHQJF4FSvTw2FoB03oA2gIR0C4CPPN/vv0dX2UKGgGR0CQisbZezD5aAdN6ANoCEdAuAotlxwQ2HV9lChoBkdAfazXp4bCJ2gHTegDaAhHQLgPOHxBmf51fZQoaAZHQImbhAfMfRxoB03oA2gIR0C4ECwOe8PGdX2UKGgGR0CQd47D2rXEaAdN6ANoCEdAuBDIgs9SuXV9lChoBkdAgDY4+Sr5qWgHTegDaAhHQLgS0vXbudB1fZQoaAZHQIEhY5q/M4doB03oA2gIR0C4GKan752ydX2UKGgGR0CNsYeZG8VYaAdN6ANoCEdAuBldFz+3pnV9lChoBkdAf8O1ct5D7mgHTegDaAhHQLgZw1anrIJ1fZQoaAZHQI+lfqcEvCdoB03oA2gIR0C4GvpFkQPJdX2UKGgGR0CB4Rt65XlsaAdN6ANoCEdAuCBLqv/za3V9lChoBkdAgTKUmMOwxGgHTegDaAhHQLghZ8lHBk91fZQoaAZHQILP3mq5sj5oB03oA2gIR0C4Ig4q9XcQdX2UKGgGR0B2C8dXDFZQaAdN6ANoCEdAuCQEf0VafXV9lChoBkdAgyukG7jDK2gHTegDaAhHQLgpBlZX+2p1fZQoaAZHQIJ2A5myxA1oB03oA2gIR0C4KbgvlEJCdX2UKGgGR0CDScma6STyaAdN6ANoCEdAuCogMDwH7nV9lChoBkdAhElE0rK/22gHTegDaAhHQLgrYV+Zw4t1fZQoaAZHQJM9KxfOUt9oB03oA2gIR0C4MRrjT8YRdX2UKGgGR0CP9APmxMWXaAdN6ANoCEdAuDJHSkTHsHV9lChoBkdAjs7mW2PT5WgHTegDaAhHQLgy7bVjI7x1fZQoaAZHQI8MaEvkBCFoB03oA2gIR0C4NJnTRYzSdX2UKGgGR0B9kXu9eyAyaAdN6ANoCEdAuDlgrOJLunV9lChoBkdAh06V4Pf8/GgHTegDaAhHQLg6ErYGt6p1fZQoaAZHQHEn3wb2lEZoB03oA2gIR0C4OnfxMFlkdX2UKGgGR0CH0j2+PBBSaAdN6ANoCEdAuDuuiEg4fnV9lChoBkdAihLV0Lc9GWgHTegDaAhHQLhB+JV81Gd1fZQoaAZHQIl9i35N47loB03oA2gIR0C4Q0Zpi7TVdX2UKGgGR0CCun00WM0haAdN6ANoCEdAuEPvBP9DQnV9lChoBkdAiJX+AuqWC2gHTegDaAhHQLhFIIppeu51fZQoaAZHQIz2X1g6U7loB03oA2gIR0C4SglhoduHdX2UKGgGR0B3n+Jhvze5aAdN6ANoCEdAuErCBZpztHV9lChoBkdAkCSOtCAtnWgHTegDaAhHQLhLJqfe1rt1fZQoaAZHQIsKBd2PkrBoB03oA2gIR0C4TFrbQC0XdX2UKGgGR0CRfNGb1AZ9aAdN6ANoCEdAuFM9zV+ZxHV9lChoBkdAjD+rbpNbkmgHTegDaAhHQLhT/5imVJN1fZQoaAZHQIqvBMvh60JoB03oA2gIR0C4VGqrWAf/dX2UKGgGR0CIEQNlRP43aAdN6ANoCEdAuFWfzkIX03V9lChoBkdAjfg0p/gBLmgHTegDaAhHQLhaeATqSox1fZQoaAZHQJAmmkzoEB9oB03oA2gIR0C4WyjK9wm3dX2UKGgGR0CRswdC3PRiaAdN6ANoCEdAuFuKLWI42nV9lChoBkdAjLqbgsK9f2gHTegDaAhHQLhctmZVn291fZQoaAZHQJF6aapgkTpoB03oA2gIR0C4Y63NxEORdX2UKGgGR0CR4z7EpAlfaAdN6ANoCEdAuGRf3YcvNHV9lChoBkdAkaGHy/bj+GgHTegDaAhHQLhkwQkHD791fZQoaAZHQI+oQHiWE9NoB03oA2gIR0C4Ze8YMvytdX2UKGgGR0CSDzXbM5fdaAdN6ANoCEdAuGrc5Ke05XV9lChoBkdAkRaAkC3gDWgHTegDaAhHQLhrjcclw991fZQoaAZHQJJGNOVPepJoB03oA2gIR0C4a/lXvH94dX2UKGgGR0CPyAWLP2PDaAdN6ANoCEdAuG1BvZRKpXV9lChoBkdAlUwIdhiLEWgHTegDaAhHQLh0D2rGR3h1fZQoaAZHQJLlODRMN+doB03oA2gIR0C4dLqZtvXLdX2UKGgGR0CU/qySFGoaaAdN6ANoCEdAuHUc46wMY3V9lChoBkdAlEBMunMt9WgHTegDaAhHQLh2SPepGWl1fZQoaAZHQJKPiAqd6LRoB03oA2gIR0C4eyAZKnNxdX2UKGgGR0CRrJZvUBn0aAdN6ANoCEdAuHvUBV+7UXV9lChoBkdAkZ8JAhStNmgHTegDaAhHQLh8OBguyu91fZQoaAZHQJGNSxKQJX1oB03oA2gIR0C4feJTER8MdX2UKGgGR0CNgmnpB5X2aAdN6ANoCEdAuISNiI+GGnV9lChoBkdAkWgaX4TK1WgHTegDaAhHQLiFR3iaRZF1fZQoaAZHQJEVdHMEA5toB03oA2gIR0C4ha1NHpbEdX2UKGgGR0CM7FuKGcnWaAdN6ANoCEdAuIbpWyTpxHV9lChoBkdAguVDIq9XcWgHTegDaAhHQLiL8i6g/Tt1fZQoaAZHQJMZwbkwN9ZoB03oA2gIR0C4jOuOKfnPdX2UKGgGR0CSKo8lHBk7aAdN6ANoCEdAuI2DdznzQXV9lChoBkdAjCbRsMy8BmgHTegDaAhHQLiPZE87p3Z1fZQoaAZHQJMbwAwPAfxoB03oA2gIR0C4lSTKgZjydX2UKGgGR0CV6N0/4ZdfaAdN6ANoCEdAuJXYPz4DcXV9lChoBkdAlUlJdnkDIWgHTegDaAhHQLiWODsMRYl1fZQoaAZHQJTFdPEbYK9oB03oA2gIR0C4l2LXxvvSdX2UKGgGR0CUTtpcophGaAdN6ANoCEdAuJxhPM0P6XV9lChoBkdAlYh36MzdlGgHTegDaAhHQLiddCEHt4R1fZQoaAZHQJU6Lc1wYLtoB03oA2gIR0C4nhOloDgZdX2UKGgGR0CWG5vIfbKzaAdN6ANoCEdAuKAO9FnZkHV9lChoBkdAk93OVxCIDmgHTegDaAhHQLilYOeJ53V1fZQoaAZHQJDJ1i8WbgFoB03oA2gIR0C4phDMvAXVdX2UKGgGR0CUTrp3os7NaAdN6ANoCEdAuKZ0GX5WR3V9lChoBkdAkjMoJu2qk2gHTegDaAhHQLinvhVlwtJ1fZQoaAZHQJBOqqPwNLFoB03oA2gIR0C4rXMk2P1ddX2UKGgGR0CNaLgNwzciaAdN6ANoCEdAuK63Eit7r3V9lChoBkdAj/m9xyXD32gHTegDaAhHQLivY3u/k/91fZQoaAZHQIweFPYWcjJoB03oA2gIR0C4sTqbjLjhdX2UKGgGR0CK55Rjz7MxaAdN6ANoCEdAuLYW8Hv+fnV9lChoBkdAhdWx+8XenGgHTegDaAhHQLi2yRTjvNN1fZQoaAZHQIqzOSKWLP5oB03oA2gIR0C4typpBX0YdX2UKGgGR0CLblWsA/9paAdN6ANoCEdAuLhcDU3GXHV9lChoBkdAiLm3eenQ6mgHTegDaAhHQLi+kTH80k51fZQoaAZHQI3A/SKFZgZoB03oA2gIR0C4v71XaJyidX2UKGgGR0CI6bBrN4Z/aAdN6ANoCEdAuMBheNT99HV9lChoBkdAjq9iay8jA2gHTegDaAhHQLjBoBrN4aB1fZQoaAZHQIwI6zsyBTZoB03oA2gIR0C4xpfe1rqMdX2UKGgGR0CJJL8qnWJ8aAdN6ANoCEdAuMdJOj7AL3V9lChoBkdAi+ynRb8m8mgHTegDaAhHQLjHqoo/iYN1fZQoaAZHQJA99M9KVY9oB03oA2gIR0C4yN5gXuVpdX2UKGgGR0CQx1+9Jz1caAdN6ANoCEdAuM+sUZeiSXV9lChoBkdAk9lpRsMy8GgHTegDaAhHQLjQklwcYIl1fZQoaAZHQI4rIKUmlZZoB03oA2gIR0C40PfQWvbHdX2UKGgGR0CRyfe1KGtZaAdN6ANoCEdAuNItCmdiD3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 31250,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:452c5916dce6d8be3cbffec5268a3a36e83f90dce6e92e9441f3a0c42ee485cb
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16cd88e9f17fab6993627e9a28c22e670452b05d8cabafec9abe6210f54a84b7
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4831315c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4831315ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4831315d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4831315dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f4831315e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f4831315ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4831315f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4831319040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f48313190d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4831319160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f48313191f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4831319280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f48313127b0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678076992808272879, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGzqRj5Sofm/YOnWv7B2P78c/U6/0jnkPuOz2z3LsA6+9SeeP+OLQrwTDLO+7Q4gvY9Afz5+Gw2+4ugCPUitA75mpkE/hmI0QJvHPD04HW4/EtUUP3AskD+rhtg9Al/ivJm3zz5YFNU+7wzfv2LQMD+ydQE+vX+Pv92iJb5dk+W/lf12v+SHcz5KZSM+hAg5vl4Kuz/VPcK9EtWyvnFJlrzM5vM+5eeaPlZ20DzMR9M77x1jPxq6ekBeciQ/fjsxPbeEOT5I/9M/enmrPf3QLb2Zt88+WBTVPu8M379i0DA/62PWPvVFAcCiuxPAxsXQP/xGG79trle/f05SPYMUl72Cq70/30zVvuiXsr7wIES93RQuvr1xob5OEW+80ZWVviEYHz/7hBA/jrn3vtzVrD+L6tU+89UfQEZl070R7UtAmbfPPlgU1T6O6BI/H1O5vx4rFj+AScm/Bf04v7KKQUCMY4XAnn4TvjtrID7nb7W+it6DP3aphL+caUA9pzklvi4x4T6j5N++Nc4Dvr6vTUAY/V696vQxQDQuCj+JthtAghIOP/qSGUByF+I+ALiwP5m3zz5YFNU+7wzfv2LQMD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAUYA02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACACSXXPQAAAADOJ/O/AAAAAPBYCz4AAAAAW+L+PwAAAABJ4DY9AAAAAL/t3z8AAAAAj6QtvAAAAACVpdy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATRQDNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBhs/LwAAAAAx/X2vwAAAACy1D89AAAAAByR+j8AAAAAXQFTvQAAAADYUv0/AAAAAEfYMzsAAAAABxXbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKvyGTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB93sw9AAAAACsy+b8AAAAAH2ynPQAAAABK5e4/AAAAAK8H0j0AAAAAHe0AQAAAAAA4jZm8AAAAAE/t5L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC9Dx01AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASeIiuwAAAADfC/2/AAAAAHWRv70AAAAAfL/8PwAAAACVQo08AAAAAEfQ5j8AAAAAhSLKvQAAAABfyOm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI7kKWom5UeMAWyUTegDjAF0lEdAuAfch5gPVnV9lChoBkdAkEKmCNCJGmgHTegDaAhHQLgIkQAMlTp1fZQoaAZHQJF4FSvTw2FoB03oA2gIR0C4CPPN/vv0dX2UKGgGR0CQisbZezD5aAdN6ANoCEdAuAotlxwQ2HV9lChoBkdAfazXp4bCJ2gHTegDaAhHQLgPOHxBmf51fZQoaAZHQImbhAfMfRxoB03oA2gIR0C4ECwOe8PGdX2UKGgGR0CQd47D2rXEaAdN6ANoCEdAuBDIgs9SuXV9lChoBkdAgDY4+Sr5qWgHTegDaAhHQLgS0vXbudB1fZQoaAZHQIEhY5q/M4doB03oA2gIR0C4GKan752ydX2UKGgGR0CNsYeZG8VYaAdN6ANoCEdAuBldFz+3pnV9lChoBkdAf8O1ct5D7mgHTegDaAhHQLgZw1anrIJ1fZQoaAZHQI+lfqcEvCdoB03oA2gIR0C4GvpFkQPJdX2UKGgGR0CB4Rt65XlsaAdN6ANoCEdAuCBLqv/za3V9lChoBkdAgTKUmMOwxGgHTegDaAhHQLghZ8lHBk91fZQoaAZHQILP3mq5sj5oB03oA2gIR0C4Ig4q9XcQdX2UKGgGR0B2C8dXDFZQaAdN6ANoCEdAuCQEf0VafXV9lChoBkdAgyukG7jDK2gHTegDaAhHQLgpBlZX+2p1fZQoaAZHQIJ2A5myxA1oB03oA2gIR0C4KbgvlEJCdX2UKGgGR0CDScma6STyaAdN6ANoCEdAuCogMDwH7nV9lChoBkdAhElE0rK/22gHTegDaAhHQLgrYV+Zw4t1fZQoaAZHQJM9KxfOUt9oB03oA2gIR0C4MRrjT8YRdX2UKGgGR0CP9APmxMWXaAdN6ANoCEdAuDJHSkTHsHV9lChoBkdAjs7mW2PT5WgHTegDaAhHQLgy7bVjI7x1fZQoaAZHQI8MaEvkBCFoB03oA2gIR0C4NJnTRYzSdX2UKGgGR0B9kXu9eyAyaAdN6ANoCEdAuDlgrOJLunV9lChoBkdAh06V4Pf8/GgHTegDaAhHQLg6ErYGt6p1fZQoaAZHQHEn3wb2lEZoB03oA2gIR0C4OnfxMFlkdX2UKGgGR0CH0j2+PBBSaAdN6ANoCEdAuDuuiEg4fnV9lChoBkdAihLV0Lc9GWgHTegDaAhHQLhB+JV81Gd1fZQoaAZHQIl9i35N47loB03oA2gIR0C4Q0Zpi7TVdX2UKGgGR0CCun00WM0haAdN6ANoCEdAuEPvBP9DQnV9lChoBkdAiJX+AuqWC2gHTegDaAhHQLhFIIppeu51fZQoaAZHQIz2X1g6U7loB03oA2gIR0C4SglhoduHdX2UKGgGR0B3n+Jhvze5aAdN6ANoCEdAuErCBZpztHV9lChoBkdAkCSOtCAtnWgHTegDaAhHQLhLJqfe1rt1fZQoaAZHQIsKBd2PkrBoB03oA2gIR0C4TFrbQC0XdX2UKGgGR0CRfNGb1AZ9aAdN6ANoCEdAuFM9zV+ZxHV9lChoBkdAjD+rbpNbkmgHTegDaAhHQLhT/5imVJN1fZQoaAZHQIqvBMvh60JoB03oA2gIR0C4VGqrWAf/dX2UKGgGR0CIEQNlRP43aAdN6ANoCEdAuFWfzkIX03V9lChoBkdAjfg0p/gBLmgHTegDaAhHQLhaeATqSox1fZQoaAZHQJAmmkzoEB9oB03oA2gIR0C4WyjK9wm3dX2UKGgGR0CRswdC3PRiaAdN6ANoCEdAuFuKLWI42nV9lChoBkdAjLqbgsK9f2gHTegDaAhHQLhctmZVn291fZQoaAZHQJF6aapgkTpoB03oA2gIR0C4Y63NxEORdX2UKGgGR0CR4z7EpAlfaAdN6ANoCEdAuGRf3YcvNHV9lChoBkdAkaGHy/bj+GgHTegDaAhHQLhkwQkHD791fZQoaAZHQI+oQHiWE9NoB03oA2gIR0C4Ze8YMvytdX2UKGgGR0CSDzXbM5fdaAdN6ANoCEdAuGrc5Ke05XV9lChoBkdAkRaAkC3gDWgHTegDaAhHQLhrjcclw991fZQoaAZHQJJGNOVPepJoB03oA2gIR0C4a/lXvH94dX2UKGgGR0CPyAWLP2PDaAdN6ANoCEdAuG1BvZRKpXV9lChoBkdAlUwIdhiLEWgHTegDaAhHQLh0D2rGR3h1fZQoaAZHQJLlODRMN+doB03oA2gIR0C4dLqZtvXLdX2UKGgGR0CU/qySFGoaaAdN6ANoCEdAuHUc46wMY3V9lChoBkdAlEBMunMt9WgHTegDaAhHQLh2SPepGWl1fZQoaAZHQJKPiAqd6LRoB03oA2gIR0C4eyAZKnNxdX2UKGgGR0CRrJZvUBn0aAdN6ANoCEdAuHvUBV+7UXV9lChoBkdAkZ8JAhStNmgHTegDaAhHQLh8OBguyu91fZQoaAZHQJGNSxKQJX1oB03oA2gIR0C4feJTER8MdX2UKGgGR0CNgmnpB5X2aAdN6ANoCEdAuISNiI+GGnV9lChoBkdAkWgaX4TK1WgHTegDaAhHQLiFR3iaRZF1fZQoaAZHQJEVdHMEA5toB03oA2gIR0C4ha1NHpbEdX2UKGgGR0CM7FuKGcnWaAdN6ANoCEdAuIbpWyTpxHV9lChoBkdAguVDIq9XcWgHTegDaAhHQLiL8i6g/Tt1fZQoaAZHQJMZwbkwN9ZoB03oA2gIR0C4jOuOKfnPdX2UKGgGR0CSKo8lHBk7aAdN6ANoCEdAuI2DdznzQXV9lChoBkdAjCbRsMy8BmgHTegDaAhHQLiPZE87p3Z1fZQoaAZHQJMbwAwPAfxoB03oA2gIR0C4lSTKgZjydX2UKGgGR0CV6N0/4ZdfaAdN6ANoCEdAuJXYPz4DcXV9lChoBkdAlUlJdnkDIWgHTegDaAhHQLiWODsMRYl1fZQoaAZHQJTFdPEbYK9oB03oA2gIR0C4l2LXxvvSdX2UKGgGR0CUTtpcophGaAdN6ANoCEdAuJxhPM0P6XV9lChoBkdAlYh36MzdlGgHTegDaAhHQLiddCEHt4R1fZQoaAZHQJU6Lc1wYLtoB03oA2gIR0C4nhOloDgZdX2UKGgGR0CWG5vIfbKzaAdN6ANoCEdAuKAO9FnZkHV9lChoBkdAk93OVxCIDmgHTegDaAhHQLilYOeJ53V1fZQoaAZHQJDJ1i8WbgFoB03oA2gIR0C4phDMvAXVdX2UKGgGR0CUTrp3os7NaAdN6ANoCEdAuKZ0GX5WR3V9lChoBkdAkjMoJu2qk2gHTegDaAhHQLinvhVlwtJ1fZQoaAZHQJBOqqPwNLFoB03oA2gIR0C4rXMk2P1ddX2UKGgGR0CNaLgNwzciaAdN6ANoCEdAuK63Eit7r3V9lChoBkdAj/m9xyXD32gHTegDaAhHQLivY3u/k/91fZQoaAZHQIweFPYWcjJoB03oA2gIR0C4sTqbjLjhdX2UKGgGR0CK55Rjz7MxaAdN6ANoCEdAuLYW8Hv+fnV9lChoBkdAhdWx+8XenGgHTegDaAhHQLi2yRTjvNN1fZQoaAZHQIqzOSKWLP5oB03oA2gIR0C4typpBX0YdX2UKGgGR0CLblWsA/9paAdN6ANoCEdAuLhcDU3GXHV9lChoBkdAiLm3eenQ6mgHTegDaAhHQLi+kTH80k51fZQoaAZHQI3A/SKFZgZoB03oA2gIR0C4v71XaJyidX2UKGgGR0CI6bBrN4Z/aAdN6ANoCEdAuMBheNT99HV9lChoBkdAjq9iay8jA2gHTegDaAhHQLjBoBrN4aB1fZQoaAZHQIwI6zsyBTZoB03oA2gIR0C4xpfe1rqMdX2UKGgGR0CJJL8qnWJ8aAdN6ANoCEdAuMdJOj7AL3V9lChoBkdAi+ynRb8m8mgHTegDaAhHQLjHqoo/iYN1fZQoaAZHQJA99M9KVY9oB03oA2gIR0C4yN5gXuVpdX2UKGgGR0CQx1+9Jz1caAdN6ANoCEdAuM+sUZeiSXV9lChoBkdAk9lpRsMy8GgHTegDaAhHQLjQklwcYIl1fZQoaAZHQI4rIKUmlZZoB03oA2gIR0C40PfQWvbHdX2UKGgGR0CRyfe1KGtZaAdN6ANoCEdAuNItCmdiD3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (998 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1020.347338103468, "std_reward": 127.5030183977083, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-06T05:27:24.111976"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60a5970f0a2dccd7927d6c7ab662afcab804a4f31c1f80e1731f0ff0dad6fa04
3
+ size 2136