Advance-Ali
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -18,26 +18,38 @@ This is a fine-tuned **`ResNet-18`** model designed for a 7-class classification
|
|
18 |
---
|
19 |
|
20 |
## 📈 Evaluation Metrics on Test Data
|
21 |
-
![confusion matrix](
|
22 |
|
23 |
Accuracy: 79.92%
|
|
|
24 |
Precision: 79.80%
|
|
|
25 |
Recall: 79.92%
|
|
|
26 |
F1-Score: 79.80%
|
27 |
|
28 |
Classification Report:
|
|
|
29 |
precision recall f1-score support
|
30 |
|
31 |
1 0.79 0.81 0.80 329
|
|
|
32 |
2 0.58 0.47 0.52 74
|
|
|
33 |
3 0.51 0.42 0.46 160
|
|
|
34 |
4 0.92 0.90 0.91 1185
|
|
|
35 |
5 0.74 0.78 0.76 478
|
|
|
36 |
6 0.68 0.72 0.70 162
|
|
|
37 |
7 0.75 0.78 0.77 680
|
38 |
-
|
39 |
accuracy 0.80 3068
|
|
|
40 |
macro avg 0.71 0.70 0.70 3068
|
|
|
41 |
weighted avg 0.80 0.80 0.80 3068
|
42 |
|
43 |
## 🧑💻 How to Use
|
@@ -48,7 +60,6 @@ You can load the model weights and architecture for inference or fine-tuning wit
|
|
48 |
```
|
49 |
|
50 |
def get_out_channels(module):
|
51 |
-
"""تابعی برای یافتن تعداد کانالهای خروجی از لایههای کانولوشن و BatchNorm"""
|
52 |
if isinstance(module, nn.Conv2d):
|
53 |
return module.out_channels
|
54 |
elif isinstance(module, nn.BatchNorm2d):
|
|
|
18 |
---
|
19 |
|
20 |
## 📈 Evaluation Metrics on Test Data
|
21 |
+
![confusion matrix](confusion_matrix.png)
|
22 |
|
23 |
Accuracy: 79.92%
|
24 |
+
|
25 |
Precision: 79.80%
|
26 |
+
|
27 |
Recall: 79.92%
|
28 |
+
|
29 |
F1-Score: 79.80%
|
30 |
|
31 |
Classification Report:
|
32 |
+
|
33 |
precision recall f1-score support
|
34 |
|
35 |
1 0.79 0.81 0.80 329
|
36 |
+
|
37 |
2 0.58 0.47 0.52 74
|
38 |
+
|
39 |
3 0.51 0.42 0.46 160
|
40 |
+
|
41 |
4 0.92 0.90 0.91 1185
|
42 |
+
|
43 |
5 0.74 0.78 0.76 478
|
44 |
+
|
45 |
6 0.68 0.72 0.70 162
|
46 |
+
|
47 |
7 0.75 0.78 0.77 680
|
48 |
+
|
49 |
accuracy 0.80 3068
|
50 |
+
|
51 |
macro avg 0.71 0.70 0.70 3068
|
52 |
+
|
53 |
weighted avg 0.80 0.80 0.80 3068
|
54 |
|
55 |
## 🧑💻 How to Use
|
|
|
60 |
```
|
61 |
|
62 |
def get_out_channels(module):
|
|
|
63 |
if isinstance(module, nn.Conv2d):
|
64 |
return module.out_channels
|
65 |
elif isinstance(module, nn.BatchNorm2d):
|