File size: 1,429 Bytes
d275658 a2b9579 d275658 a2b9579 d275658 a2b9579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
---
base_model: deepseek-ai/deepseek-coder-6.7b-base
library_name: peft
pipeline_tag: text-generation
tags:
- deepseek-coder
- lora
- transformers
---
# Model Card: ColabMind-Coder-6.7B-LoRA
## Model Details
- **Base Model:** deepseek-ai/deepseek-coder-6.7b-base
- **Technique:** LoRA fine-tuning with PEFT
- **Language:** English, programming languages (Python, Machine Learning)
- **Type:** Causal LM for code generation
## Intended Uses
- **Direct Use:** Code completion, code explanation, small script generation
- **Downstream Use:** Can be fine-tuned for domain-specific code tasks
- **Out of Scope:** Malicious code generation, production-grade critical systems without human review
## Training
- **Data:** Filtered samples from The-Stack-v2 & curated coding datasets
- **Procedure:** LoRA fine-tuning on Google Colab (T4 GPU, 8GB VRAM)
- **Precision:** Mixed fp16
## Limitations
- May produce incorrect or insecure code
- Bias from training data may persist
- Not optimized for very large-scale projects
## Quick Start
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model = AutoModelForCausalLM.from_pretrained("Agasthya0/colabmind-coder-6.7b-lora")
tokenizer = AutoTokenizer.from_pretrained("Agasthya0/colabmind-coder-6.7b-lora")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
print(pipe("def fibonacci(n):")[0]["generated_text"])
|