Agneev commited on
Commit
6764706
·
1 Parent(s): f1414e9

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.27 +/- 1.20
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96914f224a35710343618a3f29dafa714c8ac32a6e45cacd4adb49643dc070d1
3
+ size 108046
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fdc3eeceb80>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fdc3eecdf00>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1250000,
23
+ "_total_timesteps": 1250000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1681058596962599671,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAGdP0Pn4ZhT3pAAE/GdP0Pn4ZhT3pAAE/GdP0Pn4ZhT3pAAE/GdP0Pn4ZhT3pAAE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1JWFP5M6sL/DNxa/bIS6P/qIH7xd4k+/mVtPvEdrFj8949g/cX8rPs6XQr4Oocw/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAZ0/Q+fhmFPekAAT+lR6C8XFqdO+dQMLsZ0/Q+fhmFPekAAT+lR6C8XFqdO+dQMLsZ0/Q+fhmFPekAAT+lR6C8XFqdO+dQMLsZ0/Q+fhmFPekAAT+lR6C8XFqdO+dQMLuUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[0.47817305 0.06499003 0.50392014]\n [0.47817305 0.06499003 0.50392014]\n [0.47817305 0.06499003 0.50392014]\n [0.47817305 0.06499003 0.50392014]]",
38
+ "desired_goal": "[[ 1.0436349 -1.3767875 -0.58678836]\n [ 1.4571662 -0.00973725 -0.8120478 ]\n [-0.01265612 0.5875744 1.6944348 ]\n [ 0.16747834 -0.19003221 1.598665 ]]",
39
+ "observation": "[[ 0.47817305 0.06499003 0.50392014 -0.01956541 0.00480203 -0.00269037]\n [ 0.47817305 0.06499003 0.50392014 -0.01956541 0.00480203 -0.00269037]\n [ 0.47817305 0.06499003 0.50392014 -0.01956541 0.00480203 -0.00269037]\n [ 0.47817305 0.06499003 0.50392014 -0.01956541 0.00480203 -0.00269037]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAS6rQvbQsgb3erR0+Ekv5Pb0ITT0sgT0+DXiBvbSzUL3LFkc+g9EoPSjbzTz9qxU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[-0.10188731 -0.06307355 0.15398356]\n [ 0.12172522 0.05005716 0.18506306]\n [-0.06321726 -0.05095263 0.19442289]\n [ 0.04121543 0.02512892 0.1461639 ]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhbGFIAdFBMCUhpRSlIwBbJRLMowBdJRHQKtIo7A+IM11fZQoaAZoCWgPQwjwMy4cCMkHwJSGlFKUaBVLMmgWR0CrSGdCeEqUdX2UKGgGaAloD0MIOrAcIQP5/b+UhpRSlGgVSzJoFkdAq0gpcC5mRXV9lChoBmgJaA9DCIfhI2JKRA3AlIaUUpRoFUsyaBZHQKtH7BnBciZ1fZQoaAZoCWgPQwguO8Q/bPkRwJSGlFKUaBVLMmgWR0CrSYqoIfKZdX2UKGgGaAloD0MIYrzmVZ31A8CUhpRSlGgVSzJoFkdAq0lOPYFqz3V9lChoBmgJaA9DCJWCbi9pLBzAlIaUUpRoFUsyaBZHQKtJEIeHSF51fZQoaAZoCWgPQwg6sBwhA3kLwJSGlFKUaBVLMmgWR0CrSNM3yZrpdX2UKGgGaAloD0MI0SFwJNDACsCUhpRSlGgVSzJoFkdAq0pvI+4b0nV9lChoBmgJaA9DCDBHj9/blAnAlIaUUpRoFUsyaBZHQKtKMrMC9yt1fZQoaAZoCWgPQwgfhetRuJ4TwJSGlFKUaBVLMmgWR0CrSfTTOPeYdX2UKGgGaAloD0MI7iWN0TrqF8CUhpRSlGgVSzJoFkdAq0m3b7CSBHV9lChoBmgJaA9DCJfhP91AgRTAlIaUUpRoFUsyaBZHQKtLUsr/bTN1fZQoaAZoCWgPQwi8PJ0rSskGwJSGlFKUaBVLMmgWR0CrSxZXMhX9dX2UKGgGaAloD0MITz49tmUgDsCUhpRSlGgVSzJoFkdAq0rYffXPJXV9lChoBmgJaA9DCPyp8dJNov2/lIaUUpRoFUsyaBZHQKtKmzmfXf91fZQoaAZoCWgPQwgIHAk02PQUwJSGlFKUaBVLMmgWR0CrTDJ1zQu3dX2UKGgGaAloD0MIbcfUXdlFAMCUhpRSlGgVSzJoFkdAq0v2LxZuAXV9lChoBmgJaA9DCOiiIeNRChnAlIaUUpRoFUsyaBZHQKtLuE6DGtJ1fZQoaAZoCWgPQwhX68TleAUHwJSGlFKUaBVLMmgWR0CrS3r08NhFdX2UKGgGaAloD0MIGTxM++b+AMCUhpRSlGgVSzJoFkdAq00arJbMYHV9lChoBmgJaA9DCCaN0TqqOg3AlIaUUpRoFUsyaBZHQKtM3jebd8B1fZQoaAZoCWgPQwhW0/VE1wUFwJSGlFKUaBVLMmgWR0CrTKB+OOsDdX2UKGgGaAloD0MIVyb8Uj+vFsCUhpRSlGgVSzJoFkdAq0xjDQ7cPHV9lChoBmgJaA9DCIiAQ6hSsxvAlIaUUpRoFUsyaBZHQKtN+CCjDbd1fZQoaAZoCWgPQwhma32R0BYEwJSGlFKUaBVLMmgWR0CrTbvHtF8YdX2UKGgGaAloD0MIGvm84qmnB8CUhpRSlGgVSzJoFkdAq019+mWMTHV9lChoBmgJaA9DCJerH5vkRwbAlIaUUpRoFUsyaBZHQKtNQIRh+fB1fZQoaAZoCWgPQwiOeLKbGT0NwJSGlFKUaBVLMmgWR0CrT2uyeI2wdX2UKGgGaAloD0MIonxBCwl4BcCUhpRSlGgVSzJoFkdAq08vwgDA8HV9lChoBmgJaA9DCNCzWfW5mvu/lIaUUpRoFUsyaBZHQKtO8nDziCJ1fZQoaAZoCWgPQwhrEVFM3sACwJSGlFKUaBVLMmgWR0CrTrWrn1WbdX2UKGgGaAloD0MIR1oqb0eIFsCUhpRSlGgVSzJoFkdAq1DRK15SnHV9lChoBmgJaA9DCB9mL9tO+wnAlIaUUpRoFUsyaBZHQKtQlUJfICF1fZQoaAZoCWgPQwg7pu7KLjgYwJSGlFKUaBVLMmgWR0CrUFf9Hc1wdX2UKGgGaAloD0MI1xael4rtAcCUhpRSlGgVSzJoFkdAq1AbO9nK4nV9lChoBmgJaA9DCBNjmX6JeBzAlIaUUpRoFUsyaBZHQKtSLlHSWqt1fZQoaAZoCWgPQwhj8DDtm5sLwJSGlFKUaBVLMmgWR0CrUfJqASWadX2UKGgGaAloD0MIMnIW9rRDAMCUhpRSlGgVSzJoFkdAq1G13ljmS3V9lChoBmgJaA9DCF/Rrdf0AA3AlIaUUpRoFUsyaBZHQKtReSW7e2x1fZQoaAZoCWgPQwjK/KNv0pQEwJSGlFKUaBVLMmgWR0CrU5/EfkmydX2UKGgGaAloD0MIATW1bK0vCMCUhpRSlGgVSzJoFkdAq1NkE1VHWnV9lChoBmgJaA9DCFPqknGMpATAlIaUUpRoFUsyaBZHQKtTJvfCQ911fZQoaAZoCWgPQwjPaKuSyP4NwJSGlFKUaBVLMmgWR0CrUupiZv1ldX2UKGgGaAloD0MIopi8AWZ+DMCUhpRSlGgVSzJoFkdAq1UhoZhrnHV9lChoBmgJaA9DCIWxhSAHxQbAlIaUUpRoFUsyaBZHQKtU5bRF7Up1fZQoaAZoCWgPQwj0h2aeXNMDwJSGlFKUaBVLMmgWR0CrVKh60IC2dX2UKGgGaAloD0MIBcO5hhl6A8CUhpRSlGgVSzJoFkdAq1RrrZ8KHHV9lChoBmgJaA9DCFJF8SprGwbAlIaUUpRoFUsyaBZHQKtWrvVEuxt1fZQoaAZoCWgPQwgC1xUzwnsOwJSGlFKUaBVLMmgWR0CrVnMwco6TdX2UKGgGaAloD0MIXAAapUufBMCUhpRSlGgVSzJoFkdAq1Y2GwiaAnV9lChoBmgJaA9DCG2RtBt9zAHAlIaUUpRoFUsyaBZHQKtV+UliSaF1fZQoaAZoCWgPQwi7nBIQkxADwJSGlFKUaBVLMmgWR0CrWC3SBshxdX2UKGgGaAloD0MIe4SaIVV0EMCUhpRSlGgVSzJoFkdAq1fx+x4Y8HV9lChoBmgJaA9DCDVCP1OvGwbAlIaUUpRoFUsyaBZHQKtXtLmp2ll1fZQoaAZoCWgPQwiULv1LUnkBwJSGlFKUaBVLMmgWR0CrV3gQHzH0dX2UKGgGaAloD0MI8z0jERoBCsCUhpRSlGgVSzJoFkdAq1lIbS7XhHV9lChoBmgJaA9DCNQpj26EZQzAlIaUUpRoFUsyaBZHQKtZDDQ7cO91fZQoaAZoCWgPQwi/1xAcl7EBwJSGlFKUaBVLMmgWR0CrWM6DGtITdX2UKGgGaAloD0MIAb7bvHHyD8CUhpRSlGgVSzJoFkdAq1iRZ2ZAp3V9lChoBmgJaA9DCPUOt0PD4hDAlIaUUpRoFUsyaBZHQKtaKmm+Cbt1fZQoaAZoCWgPQwjeBN80ffYFwJSGlFKUaBVLMmgWR0CrWe3izcASdX2UKGgGaAloD0MIkYDR5c0xFcCUhpRSlGgVSzJoFkdAq1mv/JeVs3V9lChoBmgJaA9DCAKetHBZxf2/lIaUUpRoFUsyaBZHQKtZcpR4yGl1fZQoaAZoCWgPQwhDkIMSZuoTwJSGlFKUaBVLMmgWR0CrWwcxj8UFdX2UKGgGaAloD0MILV+X4T+9CcCUhpRSlGgVSzJoFkdAq1rKtozvZ3V9lChoBmgJaA9DCIOnkCv1PBHAlIaUUpRoFUsyaBZHQKtajS9/SYx1fZQoaAZoCWgPQwglrfiGwscQwJSGlFKUaBVLMmgWR0CrWk/w7T2GdX2UKGgGaAloD0MI6iRbXU4pCMCUhpRSlGgVSzJoFkdAq1vub1AZ9HV9lChoBmgJaA9DCMgljjwQGQnAlIaUUpRoFUsyaBZHQKtbsfZmI0t1fZQoaAZoCWgPQwj6uaEpO90PwJSGlFKUaBVLMmgWR0CrW3QtJ4B4dX2UKGgGaAloD0MIjgQabOpcDcCUhpRSlGgVSzJoFkdAq1s24EwFknV9lChoBmgJaA9DCI/C9ShcXxLAlIaUUpRoFUsyaBZHQKtc1gRbr1N1fZQoaAZoCWgPQwidhT3t8FcCwJSGlFKUaBVLMmgWR0CrXJmecx0udX2UKGgGaAloD0MIyGDFqdYiAMCUhpRSlGgVSzJoFkdAq1xbxqfvnnV9lChoBmgJaA9DCDvkZrgBnwDAlIaUUpRoFUsyaBZHQKtcHn9Nvfl1fZQoaAZoCWgPQwimgR/VsH8AwJSGlFKUaBVLMmgWR0CrXa8w5/9YdX2UKGgGaAloD0MIlphnJa24DcCUhpRSlGgVSzJoFkdAq11yqS5iE3V9lChoBmgJaA9DCJKwbycRYQ3AlIaUUpRoFUsyaBZHQKtdNOk+HJt1fZQoaAZoCWgPQwgydy0hHxQSwJSGlFKUaBVLMmgWR0CrXPeI2wV1dX2UKGgGaAloD0MIaqSl8nbkDsCUhpRSlGgVSzJoFkdAq16RCjUNKHV9lChoBmgJaA9DCFvs9lllBgjAlIaUUpRoFUsyaBZHQKteVMzuWrx1fZQoaAZoCWgPQwhzLVqAtjUBwJSGlFKUaBVLMmgWR0CrXhbbcoH+dX2UKGgGaAloD0MIzAcEOpNWA8CUhpRSlGgVSzJoFkdAq13ZiTdLx3V9lChoBmgJaA9DCIp1qnzPqADAlIaUUpRoFUsyaBZHQKtfaT101ZV1fZQoaAZoCWgPQwiXHHdKB8sCwJSGlFKUaBVLMmgWR0CrXy0WM0gsdX2UKGgGaAloD0MIsrlqniMCFsCUhpRSlGgVSzJoFkdAq17vPomoi3V9lChoBmgJaA9DCD83NGWnXwnAlIaUUpRoFUsyaBZHQKtese05U991fZQoaAZoCWgPQwijycUYWOcNwJSGlFKUaBVLMmgWR0CrYEMqjJuEdX2UKGgGaAloD0MImbnA5bFGBcCUhpRSlGgVSzJoFkdAq2AG+IuXeHV9lChoBmgJaA9DCAniPJzAdATAlIaUUpRoFUsyaBZHQKtfyR9PUKB1fZQoaAZoCWgPQwiyEB0CR6ILwJSGlFKUaBVLMmgWR0CrX4vLgXMydX2UKGgGaAloD0MItOVciqvKAsCUhpRSlGgVSzJoFkdAq2Eh7LMcInV9lChoBmgJaA9DCLNF0m70Mf2/lIaUUpRoFUsyaBZHQKtg5aAWi111fZQoaAZoCWgPQwj8cma7Qp8PwJSGlFKUaBVLMmgWR0CrYKfI0ZWJdX2UKGgGaAloD0MIesiUD0GVEMCUhpRSlGgVSzJoFkdAq2BqdQO4G3V9lChoBmgJaA9DCKPnFroSgQjAlIaUUpRoFUsyaBZHQKth/aK1og51fZQoaAZoCWgPQwh6VtKKbygXwJSGlFKUaBVLMmgWR0CrYcEdeY2LdX2UKGgGaAloD0MIaRt/orJhCMCUhpRSlGgVSzJoFkdAq2GDXWe6I3V9lChoBmgJaA9DCLiwbrw7UgnAlIaUUpRoFUsyaBZHQKthRfFaSs91ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 62500,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0834003eee41c26b5bf39fa4366fb72831bfcadc8f679cf848653d6a0303078c
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d821fc761d62a562babc3fcac2a208a5513e5968da2a3fee289b62159a64ff7e
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fdc3eeceb80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdc3eecdf00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1250000, "_total_timesteps": 1250000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681058596962599671, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAGdP0Pn4ZhT3pAAE/GdP0Pn4ZhT3pAAE/GdP0Pn4ZhT3pAAE/GdP0Pn4ZhT3pAAE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1JWFP5M6sL/DNxa/bIS6P/qIH7xd4k+/mVtPvEdrFj8949g/cX8rPs6XQr4Oocw/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAZ0/Q+fhmFPekAAT+lR6C8XFqdO+dQMLsZ0/Q+fhmFPekAAT+lR6C8XFqdO+dQMLsZ0/Q+fhmFPekAAT+lR6C8XFqdO+dQMLsZ0/Q+fhmFPekAAT+lR6C8XFqdO+dQMLuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.47817305 0.06499003 0.50392014]\n [0.47817305 0.06499003 0.50392014]\n [0.47817305 0.06499003 0.50392014]\n [0.47817305 0.06499003 0.50392014]]", "desired_goal": "[[ 1.0436349 -1.3767875 -0.58678836]\n [ 1.4571662 -0.00973725 -0.8120478 ]\n [-0.01265612 0.5875744 1.6944348 ]\n [ 0.16747834 -0.19003221 1.598665 ]]", "observation": "[[ 0.47817305 0.06499003 0.50392014 -0.01956541 0.00480203 -0.00269037]\n [ 0.47817305 0.06499003 0.50392014 -0.01956541 0.00480203 -0.00269037]\n [ 0.47817305 0.06499003 0.50392014 -0.01956541 0.00480203 -0.00269037]\n [ 0.47817305 0.06499003 0.50392014 -0.01956541 0.00480203 -0.00269037]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAS6rQvbQsgb3erR0+Ekv5Pb0ITT0sgT0+DXiBvbSzUL3LFkc+g9EoPSjbzTz9qxU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10188731 -0.06307355 0.15398356]\n [ 0.12172522 0.05005716 0.18506306]\n [-0.06321726 -0.05095263 0.19442289]\n [ 0.04121543 0.02512892 0.1461639 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhbGFIAdFBMCUhpRSlIwBbJRLMowBdJRHQKtIo7A+IM11fZQoaAZoCWgPQwjwMy4cCMkHwJSGlFKUaBVLMmgWR0CrSGdCeEqUdX2UKGgGaAloD0MIOrAcIQP5/b+UhpRSlGgVSzJoFkdAq0gpcC5mRXV9lChoBmgJaA9DCIfhI2JKRA3AlIaUUpRoFUsyaBZHQKtH7BnBciZ1fZQoaAZoCWgPQwguO8Q/bPkRwJSGlFKUaBVLMmgWR0CrSYqoIfKZdX2UKGgGaAloD0MIYrzmVZ31A8CUhpRSlGgVSzJoFkdAq0lOPYFqz3V9lChoBmgJaA9DCJWCbi9pLBzAlIaUUpRoFUsyaBZHQKtJEIeHSF51fZQoaAZoCWgPQwg6sBwhA3kLwJSGlFKUaBVLMmgWR0CrSNM3yZrpdX2UKGgGaAloD0MI0SFwJNDACsCUhpRSlGgVSzJoFkdAq0pvI+4b0nV9lChoBmgJaA9DCDBHj9/blAnAlIaUUpRoFUsyaBZHQKtKMrMC9yt1fZQoaAZoCWgPQwgfhetRuJ4TwJSGlFKUaBVLMmgWR0CrSfTTOPeYdX2UKGgGaAloD0MI7iWN0TrqF8CUhpRSlGgVSzJoFkdAq0m3b7CSBHV9lChoBmgJaA9DCJfhP91AgRTAlIaUUpRoFUsyaBZHQKtLUsr/bTN1fZQoaAZoCWgPQwi8PJ0rSskGwJSGlFKUaBVLMmgWR0CrSxZXMhX9dX2UKGgGaAloD0MITz49tmUgDsCUhpRSlGgVSzJoFkdAq0rYffXPJXV9lChoBmgJaA9DCPyp8dJNov2/lIaUUpRoFUsyaBZHQKtKmzmfXf91fZQoaAZoCWgPQwgIHAk02PQUwJSGlFKUaBVLMmgWR0CrTDJ1zQu3dX2UKGgGaAloD0MIbcfUXdlFAMCUhpRSlGgVSzJoFkdAq0v2LxZuAXV9lChoBmgJaA9DCOiiIeNRChnAlIaUUpRoFUsyaBZHQKtLuE6DGtJ1fZQoaAZoCWgPQwhX68TleAUHwJSGlFKUaBVLMmgWR0CrS3r08NhFdX2UKGgGaAloD0MIGTxM++b+AMCUhpRSlGgVSzJoFkdAq00arJbMYHV9lChoBmgJaA9DCCaN0TqqOg3AlIaUUpRoFUsyaBZHQKtM3jebd8B1fZQoaAZoCWgPQwhW0/VE1wUFwJSGlFKUaBVLMmgWR0CrTKB+OOsDdX2UKGgGaAloD0MIVyb8Uj+vFsCUhpRSlGgVSzJoFkdAq0xjDQ7cPHV9lChoBmgJaA9DCIiAQ6hSsxvAlIaUUpRoFUsyaBZHQKtN+CCjDbd1fZQoaAZoCWgPQwhma32R0BYEwJSGlFKUaBVLMmgWR0CrTbvHtF8YdX2UKGgGaAloD0MIGvm84qmnB8CUhpRSlGgVSzJoFkdAq019+mWMTHV9lChoBmgJaA9DCJerH5vkRwbAlIaUUpRoFUsyaBZHQKtNQIRh+fB1fZQoaAZoCWgPQwiOeLKbGT0NwJSGlFKUaBVLMmgWR0CrT2uyeI2wdX2UKGgGaAloD0MIonxBCwl4BcCUhpRSlGgVSzJoFkdAq08vwgDA8HV9lChoBmgJaA9DCNCzWfW5mvu/lIaUUpRoFUsyaBZHQKtO8nDziCJ1fZQoaAZoCWgPQwhrEVFM3sACwJSGlFKUaBVLMmgWR0CrTrWrn1WbdX2UKGgGaAloD0MIR1oqb0eIFsCUhpRSlGgVSzJoFkdAq1DRK15SnHV9lChoBmgJaA9DCB9mL9tO+wnAlIaUUpRoFUsyaBZHQKtQlUJfICF1fZQoaAZoCWgPQwg7pu7KLjgYwJSGlFKUaBVLMmgWR0CrUFf9Hc1wdX2UKGgGaAloD0MI1xael4rtAcCUhpRSlGgVSzJoFkdAq1AbO9nK4nV9lChoBmgJaA9DCBNjmX6JeBzAlIaUUpRoFUsyaBZHQKtSLlHSWqt1fZQoaAZoCWgPQwhj8DDtm5sLwJSGlFKUaBVLMmgWR0CrUfJqASWadX2UKGgGaAloD0MIMnIW9rRDAMCUhpRSlGgVSzJoFkdAq1G13ljmS3V9lChoBmgJaA9DCF/Rrdf0AA3AlIaUUpRoFUsyaBZHQKtReSW7e2x1fZQoaAZoCWgPQwjK/KNv0pQEwJSGlFKUaBVLMmgWR0CrU5/EfkmydX2UKGgGaAloD0MIATW1bK0vCMCUhpRSlGgVSzJoFkdAq1NkE1VHWnV9lChoBmgJaA9DCFPqknGMpATAlIaUUpRoFUsyaBZHQKtTJvfCQ911fZQoaAZoCWgPQwjPaKuSyP4NwJSGlFKUaBVLMmgWR0CrUupiZv1ldX2UKGgGaAloD0MIopi8AWZ+DMCUhpRSlGgVSzJoFkdAq1UhoZhrnHV9lChoBmgJaA9DCIWxhSAHxQbAlIaUUpRoFUsyaBZHQKtU5bRF7Up1fZQoaAZoCWgPQwj0h2aeXNMDwJSGlFKUaBVLMmgWR0CrVKh60IC2dX2UKGgGaAloD0MIBcO5hhl6A8CUhpRSlGgVSzJoFkdAq1RrrZ8KHHV9lChoBmgJaA9DCFJF8SprGwbAlIaUUpRoFUsyaBZHQKtWrvVEuxt1fZQoaAZoCWgPQwgC1xUzwnsOwJSGlFKUaBVLMmgWR0CrVnMwco6TdX2UKGgGaAloD0MIXAAapUufBMCUhpRSlGgVSzJoFkdAq1Y2GwiaAnV9lChoBmgJaA9DCG2RtBt9zAHAlIaUUpRoFUsyaBZHQKtV+UliSaF1fZQoaAZoCWgPQwi7nBIQkxADwJSGlFKUaBVLMmgWR0CrWC3SBshxdX2UKGgGaAloD0MIe4SaIVV0EMCUhpRSlGgVSzJoFkdAq1fx+x4Y8HV9lChoBmgJaA9DCDVCP1OvGwbAlIaUUpRoFUsyaBZHQKtXtLmp2ll1fZQoaAZoCWgPQwiULv1LUnkBwJSGlFKUaBVLMmgWR0CrV3gQHzH0dX2UKGgGaAloD0MI8z0jERoBCsCUhpRSlGgVSzJoFkdAq1lIbS7XhHV9lChoBmgJaA9DCNQpj26EZQzAlIaUUpRoFUsyaBZHQKtZDDQ7cO91fZQoaAZoCWgPQwi/1xAcl7EBwJSGlFKUaBVLMmgWR0CrWM6DGtITdX2UKGgGaAloD0MIAb7bvHHyD8CUhpRSlGgVSzJoFkdAq1iRZ2ZAp3V9lChoBmgJaA9DCPUOt0PD4hDAlIaUUpRoFUsyaBZHQKtaKmm+Cbt1fZQoaAZoCWgPQwjeBN80ffYFwJSGlFKUaBVLMmgWR0CrWe3izcASdX2UKGgGaAloD0MIkYDR5c0xFcCUhpRSlGgVSzJoFkdAq1mv/JeVs3V9lChoBmgJaA9DCAKetHBZxf2/lIaUUpRoFUsyaBZHQKtZcpR4yGl1fZQoaAZoCWgPQwhDkIMSZuoTwJSGlFKUaBVLMmgWR0CrWwcxj8UFdX2UKGgGaAloD0MILV+X4T+9CcCUhpRSlGgVSzJoFkdAq1rKtozvZ3V9lChoBmgJaA9DCIOnkCv1PBHAlIaUUpRoFUsyaBZHQKtajS9/SYx1fZQoaAZoCWgPQwglrfiGwscQwJSGlFKUaBVLMmgWR0CrWk/w7T2GdX2UKGgGaAloD0MI6iRbXU4pCMCUhpRSlGgVSzJoFkdAq1vub1AZ9HV9lChoBmgJaA9DCMgljjwQGQnAlIaUUpRoFUsyaBZHQKtbsfZmI0t1fZQoaAZoCWgPQwj6uaEpO90PwJSGlFKUaBVLMmgWR0CrW3QtJ4B4dX2UKGgGaAloD0MIjgQabOpcDcCUhpRSlGgVSzJoFkdAq1s24EwFknV9lChoBmgJaA9DCI/C9ShcXxLAlIaUUpRoFUsyaBZHQKtc1gRbr1N1fZQoaAZoCWgPQwidhT3t8FcCwJSGlFKUaBVLMmgWR0CrXJmecx0udX2UKGgGaAloD0MIyGDFqdYiAMCUhpRSlGgVSzJoFkdAq1xbxqfvnnV9lChoBmgJaA9DCDvkZrgBnwDAlIaUUpRoFUsyaBZHQKtcHn9Nvfl1fZQoaAZoCWgPQwimgR/VsH8AwJSGlFKUaBVLMmgWR0CrXa8w5/9YdX2UKGgGaAloD0MIlphnJa24DcCUhpRSlGgVSzJoFkdAq11yqS5iE3V9lChoBmgJaA9DCJKwbycRYQ3AlIaUUpRoFUsyaBZHQKtdNOk+HJt1fZQoaAZoCWgPQwgydy0hHxQSwJSGlFKUaBVLMmgWR0CrXPeI2wV1dX2UKGgGaAloD0MIaqSl8nbkDsCUhpRSlGgVSzJoFkdAq16RCjUNKHV9lChoBmgJaA9DCFvs9lllBgjAlIaUUpRoFUsyaBZHQKteVMzuWrx1fZQoaAZoCWgPQwhzLVqAtjUBwJSGlFKUaBVLMmgWR0CrXhbbcoH+dX2UKGgGaAloD0MIzAcEOpNWA8CUhpRSlGgVSzJoFkdAq13ZiTdLx3V9lChoBmgJaA9DCIp1qnzPqADAlIaUUpRoFUsyaBZHQKtfaT101ZV1fZQoaAZoCWgPQwiXHHdKB8sCwJSGlFKUaBVLMmgWR0CrXy0WM0gsdX2UKGgGaAloD0MIsrlqniMCFsCUhpRSlGgVSzJoFkdAq17vPomoi3V9lChoBmgJaA9DCD83NGWnXwnAlIaUUpRoFUsyaBZHQKtese05U991fZQoaAZoCWgPQwijycUYWOcNwJSGlFKUaBVLMmgWR0CrYEMqjJuEdX2UKGgGaAloD0MImbnA5bFGBcCUhpRSlGgVSzJoFkdAq2AG+IuXeHV9lChoBmgJaA9DCAniPJzAdATAlIaUUpRoFUsyaBZHQKtfyR9PUKB1fZQoaAZoCWgPQwiyEB0CR6ILwJSGlFKUaBVLMmgWR0CrX4vLgXMydX2UKGgGaAloD0MItOVciqvKAsCUhpRSlGgVSzJoFkdAq2Eh7LMcInV9lChoBmgJaA9DCLNF0m70Mf2/lIaUUpRoFUsyaBZHQKtg5aAWi111fZQoaAZoCWgPQwj8cma7Qp8PwJSGlFKUaBVLMmgWR0CrYKfI0ZWJdX2UKGgGaAloD0MIesiUD0GVEMCUhpRSlGgVSzJoFkdAq2BqdQO4G3V9lChoBmgJaA9DCKPnFroSgQjAlIaUUpRoFUsyaBZHQKth/aK1og51fZQoaAZoCWgPQwh6VtKKbygXwJSGlFKUaBVLMmgWR0CrYcEdeY2LdX2UKGgGaAloD0MIaRt/orJhCMCUhpRSlGgVSzJoFkdAq2GDXWe6I3V9lChoBmgJaA9DCLiwbrw7UgnAlIaUUpRoFUsyaBZHQKthRfFaSs91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (856 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.2725683262571694, "std_reward": 1.1952509271318192, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-09T17:42:07.123961"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:926e35f16d72bcf758442db0577736f2feb0113c8f8ef39c9c62c834c3a7b302
3
+ size 2381