{"policy_class": {":type:": "", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdab5658f00>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681834467715333156, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWV6wEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljwAAAAAAAAAjbGNPij7ObtGjOw+jbGNPij7ObtGjOw+jbGNPij7ObtGjOw+jbGNPij7ObtGjOw+jbGNPij7ObtGjOw+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksFSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljwAAAAAAAAAz1ydvxyz1r+HCoO+rBiQP2hoJD/DU4U/oErQv+rOi7/sWbY/ry+8vxtB0T2XqsY/IEhfP9OdYb8Nx66/lGgOSwVLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWeAAAAAAAAACNsY0+KPs5u0aM7D67MLE8ji6kut8nIjyNsY0+KPs5u0aM7D67MLE8ji6kut8nIjyNsY0+KPs5u0aM7D67MLE8ji6kut8nIjyNsY0+KPs5u0aM7D67MLE8ji6kut8nIjyNsY0+KPs5u0aM7D67MLE8ji6kut8nIjyUaA5LBUsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.27674523 -0.00283785 0.4620077 ]\n [ 0.27674523 -0.00283785 0.4620077 ]\n [ 0.27674523 -0.00283785 0.4620077 ]\n [ 0.27674523 -0.00283785 0.4620077 ]\n [ 0.27674523 -0.00283785 0.4620077 ]]", "desired_goal": "[[-1.2293948 -1.677341 -0.2559397 ]\n [ 1.1257529 0.6422181 1.0416187 ]\n [-1.6272774 -1.092252 1.4246192 ]\n [-1.4702052 0.10217496 1.552081 ]\n [ 0.8721943 -0.88131446 -1.3654495 ]]", "observation": "[[ 0.27674523 -0.00283785 0.4620077 0.02162968 -0.00125261 0.0098972 ]\n [ 0.27674523 -0.00283785 0.4620077 0.02162968 -0.00125261 0.0098972 ]\n [ 0.27674523 -0.00283785 0.4620077 0.02162968 -0.00125261 0.0098972 ]\n [ 0.27674523 -0.00283785 0.4620077 0.02162968 -0.00125261 0.0098972 ]\n [ 0.27674523 -0.00283785 0.4620077 0.02162968 -0.00125261 0.0098972 ]]"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVeAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYFAAAAAAAAAAEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksFhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWV6wEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljwAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksFSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljwAAAAAAAAALEUDPlheNr1fYtw9ObuZO+dokbw3NTE+QuJgPLeA+j2D0So+x9ffvULM7Dy9BYM8MM9lvZXa9L3l9oo+lGgOSwVLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWeAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBUsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12819356 -0.04452357 0.1076095 ]\n [ 0.00469151 -0.01775022 0.17305456]\n [ 0.01372582 0.12231582 0.16681485]\n [-0.10929828 0.02890599 0.01599395]\n [-0.05610579 -0.11955754 0.2714149 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeNUD5iFTCcCUhpRSlIwBbJRLMowBdJRHQKYTcekHlfZ1fZQoaAZoCWgPQwhzR//LtcgUwJSGlFKUaBVLMmgWR0CmEzYeLehxdX2UKGgGaAloD0MI1EUKZeFLDMCUhpRSlGgVSzJoFkdAphL7ksBhhHV9lChoBmgJaA9DCMx6MZQTjQ/AlIaUUpRoFUsyaBZHQKYSv7RfF751fZQoaAZoCWgPQwg9EFmkiXcIwJSGlFKUaBVLMmgWR0CmEoGbCrLhdX2UKGgGaAloD0MItcGJ6NeWFcCUhpRSlGgVSzJoFkdAphSs8xKxs3V9lChoBmgJaA9DCNi4/l2f2RPAlIaUUpRoFUsyaBZHQKYUcVUMoc91fZQoaAZoCWgPQwiN0TqqmuAUwJSGlFKUaBVLMmgWR0CmFDXA2ycDdX2UKGgGaAloD0MIh1EQPL7dBsCUhpRSlGgVSzJoFkdAphP5UvPC23V9lChoBmgJaA9DCGfV52ordgbAlIaUUpRoFUsyaBZHQKYTuzyBkI51fZQoaAZoCWgPQwi9cVKY95gRwJSGlFKUaBVLMmgWR0CmFeCcf/3ndX2UKGgGaAloD0MIuFZ72AtFC8CUhpRSlGgVSzJoFkdAphWknRb8nHV9lChoBmgJaA9DCIDXZ876NA3AlIaUUpRoFUsyaBZHQKYVacTakAR1fZQoaAZoCWgPQwh6yJQPQdURwJSGlFKUaBVLMmgWR0CmFS1WS2YwdX2UKGgGaAloD0MIHyv4bYhRB8CUhpRSlGgVSzJoFkdAphTvKMefZnV9lChoBmgJaA9DCGN7Lei9cQfAlIaUUpRoFUsyaBZHQKYXB5GjKxN1fZQoaAZoCWgPQwiloNtLGjMSwJSGlFKUaBVLMmgWR0CmFsv+fh/BdX2UKGgGaAloD0MI46dxb37DCsCUhpRSlGgVSzJoFkdAphaQLqlgt3V9lChoBmgJaA9DCOxP4nMnGBLAlIaUUpRoFUsyaBZHQKYWU7Xg9/11fZQoaAZoCWgPQwhr09heC3oOwJSGlFKUaBVLMmgWR0CmFhXKr7wbdX2UKGgGaAloD0MIb5upEI+EEcCUhpRSlGgVSzJoFkdAphgmjdpItnV9lChoBmgJaA9DCJ1IMNXMahDAlIaUUpRoFUsyaBZHQKYX6qBEroZ1fZQoaAZoCWgPQwgQA137AjoNwJSGlFKUaBVLMmgWR0CmF663I+4cdX2UKGgGaAloD0MI8MFrlzacB8CUhpRSlGgVSzJoFkdAphdyXF98Z3V9lChoBmgJaA9DCPHydK4oRQ/AlIaUUpRoFUsyaBZHQKYXNGYKIBR1fZQoaAZoCWgPQwjtDFNb6qALwJSGlFKUaBVLMmgWR0CmGWGu9vjwdX2UKGgGaAloD0MIeEZblUT2DcCUhpRSlGgVSzJoFkdAphklznzQNXV9lChoBmgJaA9DCLqHhO/9bQnAlIaUUpRoFUsyaBZHQKYY6figkC51fZQoaAZoCWgPQwhs6dFUT0YUwJSGlFKUaBVLMmgWR0CmGK3Sa3I/dX2UKGgGaAloD0MI7Zv7q8cdDMCUhpRSlGgVSzJoFkdAphhv7m+0xHV9lChoBmgJaA9DCH6K48CrpQ7AlIaUUpRoFUsyaBZHQKYaghW5pal1fZQoaAZoCWgPQwgI6SlyiPgGwJSGlFKUaBVLMmgWR0CmGkYr8R+SdX2UKGgGaAloD0MIrTHohNAhCcCUhpRSlGgVSzJoFkdAphoKSaEzwnV9lChoBmgJaA9DCBMro5HPKwjAlIaUUpRoFUsyaBZHQKYZzeqJdjZ1fZQoaAZoCWgPQwheZAJ+jUQPwJSGlFKUaBVLMmgWR0CmGY/YzzmPdX2UKGgGaAloD0MIx6F+F7bmFsCUhpRSlGgVSzJoFkdAphupkCmuT3V9lChoBmgJaA9DCP/pBgq8swzAlIaUUpRoFUsyaBZHQKYbbdWQwK11fZQoaAZoCWgPQwjturciMeEFwJSGlFKUaBVLMmgWR0CmGzHYg7o0dX2UKGgGaAloD0MIHvmDgefuEsCUhpRSlGgVSzJoFkdAphr1Yp2ECnV9lChoBmgJaA9DCAoxl1RtlwfAlIaUUpRoFUsyaBZHQKYat4Oc2BJ1fZQoaAZoCWgPQwh/TkF+NmISwJSGlFKUaBVLMmgWR0CmHL4sunMudX2UKGgGaAloD0MITfOOU3SEC8CUhpRSlGgVSzJoFkdAphyCQHRkVnV9lChoBmgJaA9DCATLETKQRw/AlIaUUpRoFUsyaBZHQKYcRkIX0oV1fZQoaAZoCWgPQwis4LchxqsLwJSGlFKUaBVLMmgWR0CmHAoXKr7wdX2UKGgGaAloD0MIuyU5YFezDcCUhpRSlGgVSzJoFkdAphvMAksz23V9lChoBmgJaA9DCEA08+SaggjAlIaUUpRoFUsyaBZHQKYd2ydnTRZ1fZQoaAZoCWgPQwh5ymq6nqgLwJSGlFKUaBVLMmgWR0CmHZ9BBzFNdX2UKGgGaAloD0MIlrN3RlvlEMCUhpRSlGgVSzJoFkdAph1jkS26TXV9lChoBmgJaA9DCFzJjo1AfAnAlIaUUpRoFUsyaBZHQKYdJzT4L1F1fZQoaAZoCWgPQwh+cD51rGISwJSGlFKUaBVLMmgWR0CmHOksBhhIdX2UKGgGaAloD0MI+3PRkPEYE8CUhpRSlGgVSzJoFkdAph8cBjnV5XV9lChoBmgJaA9DCLG/7J48DAzAlIaUUpRoFUsyaBZHQKYe3/lyR0V1fZQoaAZoCWgPQwjTEcDN4iUTwJSGlFKUaBVLMmgWR0CmHqP8ZUDMdX2UKGgGaAloD0MIRgiPNo7oEMCUhpRSlGgVSzJoFkdAph5ndqL0jHV9lChoBmgJaA9DCOYffZOmoRjAlIaUUpRoFUsyaBZHQKYeKa72+PB1fZQoaAZoCWgPQwjTn/1IETkPwJSGlFKUaBVLMmgWR0CmID0u+RHPdX2UKGgGaAloD0MItoMR+wQQB8CUhpRSlGgVSzJoFkdApiABVyWAw3V9lChoBmgJaA9DCMQihh3GxA7AlIaUUpRoFUsyaBZHQKYfxbkfcN91fZQoaAZoCWgPQwhmMEYkCh0UwJSGlFKUaBVLMmgWR0CmH4lTvRZ2dX2UKGgGaAloD0MIUmLX9nYLC8CUhpRSlGgVSzJoFkdAph9LeZXuE3V9lChoBmgJaA9DCMI1d/S/3APAlIaUUpRoFUsyaBZHQKYhWSr5qM51fZQoaAZoCWgPQwhaL4Zyon0LwJSGlFKUaBVLMmgWR0CmIR08/2TQdX2UKGgGaAloD0MIF5rrNNICEMCUhpRSlGgVSzJoFkdApiDhllK9PHV9lChoBmgJaA9DCP8/TpgwugXAlIaUUpRoFUsyaBZHQKYgpYmLLp11fZQoaAZoCWgPQwi5cYv5uSEPwJSGlFKUaBVLMmgWR0CmIGdwm3OOdX2UKGgGaAloD0MIar+1EyWhD8CUhpRSlGgVSzJoFkdApiKkNKAavXV9lChoBmgJaA9DCN16TQ8KagvAlIaUUpRoFUsyaBZHQKYiaF+NLlF1fZQoaAZoCWgPQwg4TgrzHqcMwJSGlFKUaBVLMmgWR0CmIix+jM3ZdX2UKGgGaAloD0MIEFg5tMi2BMCUhpRSlGgVSzJoFkdApiHwkxASnXV9lChoBmgJaA9DCA8KStHKbRHAlIaUUpRoFUsyaBZHQKYhswqy4Wl1fZQoaAZoCWgPQwjJVpdTAoIQwJSGlFKUaBVLMmgWR0CmI9BppN9IdX2UKGgGaAloD0MIK6G7JM5qCcCUhpRSlGgVSzJoFkdApiOUfigkC3V9lChoBmgJaA9DCBsqxvmbQBLAlIaUUpRoFUsyaBZHQKYjWIZ62OR1fZQoaAZoCWgPQwgwSPq0ii4TwJSGlFKUaBVLMmgWR0CmIxwMx46fdX2UKGgGaAloD0MIByXMtP1bEMCUhpRSlGgVSzJoFkdApiLeOwPiDXV9lChoBmgJaA9DCG7b96i/3hLAlIaUUpRoFUsyaBZHQKYk5j0+TvB1fZQoaAZoCWgPQwhV+glnt1YQwJSGlFKUaBVLMmgWR0CmJKpQUHpsdX2UKGgGaAloD0MIhsq/lleOBsCUhpRSlGgVSzJoFkdApiRubqhUR3V9lChoBmgJaA9DCJQSglX1kgPAlIaUUpRoFUsyaBZHQKYkMfFJg9h1fZQoaAZoCWgPQwj7dhIR/gUCwJSGlFKUaBVLMmgWR0CmI/PO6d1/dX2UKGgGaAloD0MIiIBDqFIzAcCUhpRSlGgVSzJoFkdApiaNIVdonXV9lChoBmgJaA9DCMmOjUC8rv6/lIaUUpRoFUsyaBZHQKYmUi/wiJR1fZQoaAZoCWgPQwhse7slOWAGwJSGlFKUaBVLMmgWR0CmJhbGWD6FdX2UKGgGaAloD0MI3q8CfLd5C8CUhpRSlGgVSzJoFkdApiXa1stTUHV9lChoBmgJaA9DCBJOC170hRXAlIaUUpRoFUsyaBZHQKYlnX2dupF1fZQoaAZoCWgPQwgzqaENwCYFwJSGlFKUaBVLMmgWR0CmKF2U0Nz9dX2UKGgGaAloD0MIf0xr09jeA8CUhpRSlGgVSzJoFkdApigiNsFdLXV9lChoBmgJaA9DCMsSnWUWgQjAlIaUUpRoFUsyaBZHQKYn5tRekYZ1fZQoaAZoCWgPQwjgufdwycEQwJSGlFKUaBVLMmgWR0CmJ6sVLzwudX2UKGgGaAloD0MIb9V1qKYkAsCUhpRSlGgVSzJoFkdApidt87ZFonV9lChoBmgJaA9DCNnO91Pj5QfAlIaUUpRoFUsyaBZHQKYqYqXnhbZ1fZQoaAZoCWgPQwguq7AZ4LIRwJSGlFKUaBVLMmgWR0CmKifk3juKdX2UKGgGaAloD0MIEalpF9PsAcCUhpRSlGgVSzJoFkdApintDlYEGXV9lChoBmgJaA9DCOpYpfRMTxDAlIaUUpRoFUsyaBZHQKYpsTyrgfl1fZQoaAZoCWgPQwh4X5ULlT8OwJSGlFKUaBVLMmgWR0CmKXXXRPXTdX2UKGgGaAloD0MIhBCQL6EC/r+UhpRSlGgVSzJoFkdApiw4XfqHGnV9lChoBmgJaA9DCLiswmaAS/2/lIaUUpRoFUsyaBZHQKYr/OJLuhN1fZQoaAZoCWgPQwhv05/9SJESwJSGlFKUaBVLMmgWR0CmK8Hk92X+dX2UKGgGaAloD0MIARWOIJUCE8CUhpRSlGgVSzJoFkdApiuGs1baAXV9lChoBmgJaA9DCFbvcDs0DAPAlIaUUpRoFUsyaBZHQKYrSVDa4+d1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 5, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}