def chat(model, tokenizer): print("type \"q\" to quit. Automatically quits after 5 messages") for step in range(5): message = input("MESSAGE: ") if message in ["", "q"]: # if the user doesn't wanna talk break # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(message + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature = 0.8, ) # pretty print last ouput tokens from bot print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))