File size: 3,191 Bytes
7e26aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1eafa4
7e26aef
 
f1eafa4
184051e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e26aef
 
 
 
 
 
 
 
 
f1eafa4
 
 
7e26aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1eafa4
7e26aef
 
 
 
 
f1eafa4
 
 
 
 
7e26aef
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: emotion
      type: emotion
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.937
    - name: F1
      type: f1
      value: 0.9372331942198677
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: emotion
      type: emotion
      config: default
      split: test
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.924
      verified: true
    - name: Precision Macro
      type: precision
      value: 0.8811256547088461
      verified: true
    - name: Precision Micro
      type: precision
      value: 0.924
      verified: true
    - name: Precision Weighted
      type: precision
      value: 0.9250809835160841
      verified: true
    - name: Recall Macro
      type: recall
      value: 0.8882276452967225
      verified: true
    - name: Recall Micro
      type: recall
      value: 0.924
      verified: true
    - name: Recall Weighted
      type: recall
      value: 0.924
      verified: true
    - name: F1 Macro
      type: f1
      value: 0.8844059421244559
      verified: true
    - name: F1 Micro
      type: f1
      value: 0.924
      verified: true
    - name: F1 Weighted
      type: f1
      value: 0.9243911585312775
      verified: true
    - name: loss
      type: loss
      value: 0.15944455564022064
      verified: true
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-emotion

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1413
- Accuracy: 0.937
- F1: 0.9372

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.7628        | 1.0   | 250  | 0.2489          | 0.9155   | 0.9141 |
| 0.2014        | 2.0   | 500  | 0.1716          | 0.928    | 0.9283 |
| 0.1351        | 3.0   | 750  | 0.1456          | 0.937    | 0.9374 |
| 0.1046        | 4.0   | 1000 | 0.1440          | 0.9355   | 0.9349 |
| 0.0877        | 5.0   | 1250 | 0.1413          | 0.937    | 0.9372 |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1