File size: 3,191 Bytes
7e26aef f1eafa4 7e26aef f1eafa4 184051e 7e26aef f1eafa4 7e26aef f1eafa4 7e26aef f1eafa4 7e26aef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.937
- name: F1
type: f1
value: 0.9372331942198677
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
config: default
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.924
verified: true
- name: Precision Macro
type: precision
value: 0.8811256547088461
verified: true
- name: Precision Micro
type: precision
value: 0.924
verified: true
- name: Precision Weighted
type: precision
value: 0.9250809835160841
verified: true
- name: Recall Macro
type: recall
value: 0.8882276452967225
verified: true
- name: Recall Micro
type: recall
value: 0.924
verified: true
- name: Recall Weighted
type: recall
value: 0.924
verified: true
- name: F1 Macro
type: f1
value: 0.8844059421244559
verified: true
- name: F1 Micro
type: f1
value: 0.924
verified: true
- name: F1 Weighted
type: f1
value: 0.9243911585312775
verified: true
- name: loss
type: loss
value: 0.15944455564022064
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1413
- Accuracy: 0.937
- F1: 0.9372
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.7628 | 1.0 | 250 | 0.2489 | 0.9155 | 0.9141 |
| 0.2014 | 2.0 | 500 | 0.1716 | 0.928 | 0.9283 |
| 0.1351 | 3.0 | 750 | 0.1456 | 0.937 | 0.9374 |
| 0.1046 | 4.0 | 1000 | 0.1440 | 0.9355 | 0.9349 |
| 0.0877 | 5.0 | 1250 | 0.1413 | 0.937 | 0.9372 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|