File size: 2,056 Bytes
8024647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
language:
- ar
license: mit
base_model: distil-whisper/distil-large-v2
tags:
- generated_from_trainer
datasets:
- nadsoft/Jordan-Audio
metrics:
- wer
model-index:
- name: Hamsa distill alfa
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: nadsoft/Jordan-Audio
      type: nadsoft/Jordan-Audio
    metrics:
    - name: Wer
      type: wer
      value: 45.223367697594504
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Hamsa distill alfa

This model is a fine-tuned version of [distil-whisper/distil-large-v2](https://huggingface.co/distil-whisper/distil-large-v2) on the nadsoft/Jordan-Audio dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9732
- Wer Ortho: 47.5105
- Wer: 45.2234

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 8000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|
| 0.2094        | 7.04  | 2000 | 0.8198          | 48.5575   | 46.3918 |
| 0.0883        | 14.08 | 4000 | 0.9112          | 47.4174   | 44.6048 |
| 0.0662        | 21.13 | 6000 | 0.9644          | 46.8125   | 44.6277 |
| 0.0496        | 28.17 | 8000 | 0.9732          | 47.5105   | 45.2234 |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1