--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: answerdotai-ModernBERT-base-finetuned results: [] --- # answerdotai-ModernBERT-base-finetuned This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0116 - Accuracy: 0.9976 - Precision: 0.9977 - Recall: 0.9976 - F1: 0.9976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.244005797262286e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.0175 | 1.0 | 1506 | 0.0195 | 0.9971 | 0.9971 | 0.9971 | 0.9971 | | 0.0134 | 2.0 | 3012 | 0.0153 | 0.9970 | 0.9970 | 0.9970 | 0.9970 | | 0.0 | 3.0 | 4518 | 0.0228 | 0.9976 | 0.9976 | 0.9976 | 0.9976 | | 0.0 | 4.0 | 6024 | 0.0270 | 0.9976 | 0.9976 | 0.9976 | 0.9976 | | 0.0 | 5.0 | 7530 | 0.0272 | 0.9976 | 0.9976 | 0.9976 | 0.9976 | | 0.0 | 6.0 | 9036 | 0.0279 | 0.9975 | 0.9975 | 0.9975 | 0.9975 | | 0.0 | 7.0 | 10542 | 0.0283 | 0.9975 | 0.9975 | 0.9975 | 0.9975 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0