Britney-Loh-itsbritneyloh-SDXL.safetensors
/
Britney-Loh-itsbritneyloh-SDXL_config
/config_file.toml
[sdxl_arguments] | |
cache_text_encoder_outputs = true | |
no_half_vae = true | |
min_timestep = 0 | |
max_timestep = 1000 | |
shuffle_caption = false | |
[model_arguments] | |
pretrained_model_name_or_path = "/content/pretrained_model/sd_xl_base_1.0.safetensors" | |
vae = "/content/vae/sdxl_vae.safetensors" | |
[dataset_arguments] | |
debug_dataset = false | |
in_json = "/content/LoRA/meta_lat.json" | |
train_data_dir = "/content/LoRA/train_data" | |
dataset_repeats = 3 | |
keep_tokens = 0 | |
resolution = "1024,1024" | |
color_aug = false | |
token_warmup_min = 1 | |
token_warmup_step = 0 | |
[training_arguments] | |
output_dir = "/content/LoRA/output" | |
output_name = "Britney-Loh-itsbritneyloh-SDXL" | |
save_precision = "fp16" | |
save_every_n_epochs = 1 | |
train_batch_size = 10 | |
max_token_length = 225 | |
mem_eff_attn = false | |
sdpa = false | |
xformers = true | |
max_train_epochs = 20 | |
max_data_loader_n_workers = 8 | |
persistent_data_loader_workers = true | |
seed = 2831 | |
gradient_checkpointing = true | |
gradient_accumulation_steps = 1 | |
mixed_precision = "fp16" | |
[logging_arguments] | |
log_with = "wandb" | |
log_tracker_name = "Britney-Loh-itsbritneyloh-SDXL" | |
logging_dir = "/content/LoRA/logs" | |
[sample_prompt_arguments] | |
sample_every_n_epochs = 1 | |
sample_sampler = "euler_a" | |
[saving_arguments] | |
save_model_as = "safetensors" | |
[optimizer_arguments] | |
optimizer_type = "AdaFactor" | |
learning_rate = 0.001 | |
max_grad_norm = 0 | |
optimizer_args = [ "scale_parameter=False", "relative_step=False", "warmup_init=False",] | |
lr_scheduler = "constant" | |
lr_warmup_steps = 0 | |
[additional_network_arguments] | |
no_metadata = false | |
network_module = "networks.lora" | |
network_dim = 32 | |
network_alpha = 64 | |
network_args = [ "conv_dim=8", "conv_alpha=1",] | |
network_train_unet_only = true | |
[advanced_training_config] | |
multires_noise_iterations = 6 | |
multires_noise_discount = 0.3 | |
min_snr_gamma = 3 | |