---
library_name: transformers
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- axolotl
- generated_from_trainer
datasets:
- AiAF/KJV-LLM-pretraining.jsonl
model-index:
- name: KJV-LLM-Pretrained-V1.1
results: []
---
[
](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.6.0`
```yaml
base_model: mistralai/Mistral-7B-v0.1
# optionally might have model_type or tokenizer_type
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: AiAF/KJV-LLM-Pretrained-V1.1
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: AiAF/KJV-LLM-pretraining.jsonl
type: completion
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/out/KJV-LLM-Pretrained-V1.1
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project: "LLM-Pretraining"
wandb_entity:
wandb_watch: "all"
wandb_name: "KJV-LLM-Pretrained-V1.1"
wandb_log_model: "false"
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 8
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint: /workspace/axolotl/outputs/out/KJV-LLM-Pretrained-V1.0/checkpoint-28
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
# KJV-LLM-Pretrained-V1.1
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the AiAF/KJV-LLM-pretraining.jsonl dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0986
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 8.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.0809 | 0.1333 | 1 | 0.0975 |
| 0.0878 | 0.2667 | 2 | 0.0963 |
| 0.3153 | 0.5333 | 4 | 0.0909 |
| 0.077 | 0.8 | 6 | 0.0854 |
| 0.2377 | 1.0 | 8 | 0.0820 |
| 0.0509 | 1.2667 | 10 | 0.0858 |
| 0.0429 | 1.5333 | 12 | 0.0862 |
| 0.3496 | 1.8 | 14 | 0.0872 |
| 0.0426 | 2.0 | 16 | 0.0895 |
| 0.0337 | 2.2667 | 18 | 0.0888 |
| 0.0348 | 2.5333 | 20 | 0.0905 |
| 0.0852 | 2.8 | 22 | 0.0902 |
| 0.0317 | 3.0 | 24 | 0.0902 |
| 0.0304 | 3.2667 | 26 | 0.0900 |
| 0.0242 | 3.5333 | 28 | 0.0901 |
| 0.1936 | 4.2667 | 30 | 0.0918 |
| 0.0242 | 4.5333 | 32 | 0.0960 |
| 0.0219 | 4.8 | 34 | 0.0940 |
| 0.0187 | 5.0 | 36 | 0.0953 |
| 0.0188 | 5.2667 | 38 | 0.0954 |
| 0.0158 | 5.5333 | 40 | 0.0966 |
| 0.3393 | 5.8 | 42 | 0.0979 |
| 0.0163 | 6.0 | 44 | 0.0984 |
| 0.3313 | 6.2667 | 46 | 0.0984 |
| 0.015 | 6.5333 | 48 | 0.0985 |
| 0.0168 | 6.8 | 50 | 0.0986 |
| 0.0144 | 7.0 | 52 | 0.0986 |
| 0.0147 | 7.2667 | 54 | 0.0987 |
| 0.0154 | 7.5333 | 56 | 0.0986 |
### Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0