--- library_name: transformers license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - axolotl - generated_from_trainer datasets: - AiAF/KJV-LLM-pretraining.jsonl model-index: - name: KJV-LLM-Pretrained-V1.1 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: mistralai/Mistral-7B-v0.1 # optionally might have model_type or tokenizer_type model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer # Automatically upload checkpoint and final model to HF hub_model_id: AiAF/KJV-LLM-Pretrained-V1.1 load_in_8bit: false load_in_4bit: false strict: false datasets: - path: AiAF/KJV-LLM-pretraining.jsonl type: completion dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/out/KJV-LLM-Pretrained-V1.1 sequence_len: 8192 sample_packing: true pad_to_sequence_len: true eval_sample_packing: false wandb_project: "LLM-Pretraining" wandb_entity: wandb_watch: "all" wandb_name: "KJV-LLM-Pretrained-V1.1" wandb_log_model: "false" gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 8 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000005 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: /workspace/axolotl/outputs/out/KJV-LLM-Pretrained-V1.0/checkpoint-28 local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# KJV-LLM-Pretrained-V1.1 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the AiAF/KJV-LLM-pretraining.jsonl dataset. It achieves the following results on the evaluation set: - Loss: 0.0986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 8.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0809 | 0.1333 | 1 | 0.0975 | | 0.0878 | 0.2667 | 2 | 0.0963 | | 0.3153 | 0.5333 | 4 | 0.0909 | | 0.077 | 0.8 | 6 | 0.0854 | | 0.2377 | 1.0 | 8 | 0.0820 | | 0.0509 | 1.2667 | 10 | 0.0858 | | 0.0429 | 1.5333 | 12 | 0.0862 | | 0.3496 | 1.8 | 14 | 0.0872 | | 0.0426 | 2.0 | 16 | 0.0895 | | 0.0337 | 2.2667 | 18 | 0.0888 | | 0.0348 | 2.5333 | 20 | 0.0905 | | 0.0852 | 2.8 | 22 | 0.0902 | | 0.0317 | 3.0 | 24 | 0.0902 | | 0.0304 | 3.2667 | 26 | 0.0900 | | 0.0242 | 3.5333 | 28 | 0.0901 | | 0.1936 | 4.2667 | 30 | 0.0918 | | 0.0242 | 4.5333 | 32 | 0.0960 | | 0.0219 | 4.8 | 34 | 0.0940 | | 0.0187 | 5.0 | 36 | 0.0953 | | 0.0188 | 5.2667 | 38 | 0.0954 | | 0.0158 | 5.5333 | 40 | 0.0966 | | 0.3393 | 5.8 | 42 | 0.0979 | | 0.0163 | 6.0 | 44 | 0.0984 | | 0.3313 | 6.2667 | 46 | 0.0984 | | 0.015 | 6.5333 | 48 | 0.0985 | | 0.0168 | 6.8 | 50 | 0.0986 | | 0.0144 | 7.0 | 52 | 0.0986 | | 0.0147 | 7.2667 | 54 | 0.0987 | | 0.0154 | 7.5333 | 56 | 0.0986 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0