AigizK commited on
Commit
9515ed0
·
verified ·
1 Parent(s): 8ce42dd

End of training

Browse files
README.md ADDED
@@ -0,0 +1,325 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ base_model: utter-project/mHuBERT-147
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - common_voice_17_0
8
+ metrics:
9
+ - wer
10
+ model-index:
11
+ - name: training
12
+ results:
13
+ - task:
14
+ name: Automatic Speech Recognition
15
+ type: automatic-speech-recognition
16
+ dataset:
17
+ name: common_voice_17_0
18
+ type: common_voice_17_0
19
+ config: ba
20
+ split: test
21
+ args: ba
22
+ metrics:
23
+ - name: Wer
24
+ type: wer
25
+ value: 0.12020672995899107
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # training
32
+
33
+ This model is a fine-tuned version of [utter-project/mHuBERT-147](https://huggingface.co/utter-project/mHuBERT-147) on the common_voice_17_0 dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.1375
36
+ - Wer: 0.1202
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 1e-05
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 4
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 60
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
67
+ |:-------------:|:-------:|:------:|:---------------:|:------:|
68
+ | 51.2746 | 0.2393 | 1000 | 38.1449 | 1.0031 |
69
+ | 31.0695 | 0.4787 | 2000 | 22.2755 | 1.0 |
70
+ | 25.9185 | 0.7180 | 3000 | 18.9954 | 1.0 |
71
+ | 22.7995 | 0.9574 | 4000 | 16.6842 | 1.0 |
72
+ | 18.799 | 1.1967 | 5000 | 13.7933 | 1.0 |
73
+ | 14.7246 | 1.4361 | 6000 | 10.6011 | 1.0 |
74
+ | 10.0615 | 1.6754 | 7000 | 7.5085 | 1.0 |
75
+ | 6.4954 | 1.9148 | 8000 | 5.1960 | 1.0 |
76
+ | 4.3991 | 2.1541 | 9000 | 3.9369 | 1.0 |
77
+ | 3.5461 | 2.3935 | 10000 | 3.4371 | 1.0 |
78
+ | 3.3468 | 2.6328 | 11000 | 3.3105 | 1.0 |
79
+ | 3.2927 | 2.8722 | 12000 | 3.2628 | 1.0 |
80
+ | 3.1628 | 3.1115 | 13000 | 3.1256 | 1.0 |
81
+ | 2.8922 | 3.3509 | 14000 | 2.8131 | 1.0 |
82
+ | 2.171 | 3.5902 | 15000 | 1.9567 | 1.0178 |
83
+ | 1.5491 | 3.8296 | 16000 | 1.2633 | 0.7642 |
84
+ | 1.1192 | 4.0689 | 17000 | 0.8790 | 0.5990 |
85
+ | 0.8418 | 4.3083 | 18000 | 0.6252 | 0.5017 |
86
+ | 0.6805 | 4.5476 | 19000 | 0.4897 | 0.4459 |
87
+ | 0.5703 | 4.7870 | 20000 | 0.4059 | 0.4047 |
88
+ | 0.4754 | 5.0263 | 21000 | 0.3564 | 0.3737 |
89
+ | 0.4441 | 5.2657 | 22000 | 0.3221 | 0.3519 |
90
+ | 0.4655 | 5.5050 | 23000 | 0.2948 | 0.3308 |
91
+ | 0.3695 | 5.7444 | 24000 | 0.2821 | 0.3148 |
92
+ | 0.3551 | 5.9837 | 25000 | 0.2635 | 0.3011 |
93
+ | 0.3253 | 6.2231 | 26000 | 0.2505 | 0.2891 |
94
+ | 0.3298 | 6.4624 | 27000 | 0.2368 | 0.2754 |
95
+ | 0.3094 | 6.7018 | 28000 | 0.2296 | 0.2686 |
96
+ | 0.3055 | 6.9411 | 29000 | 0.2296 | 0.2620 |
97
+ | 0.2831 | 7.1805 | 30000 | 0.2127 | 0.2515 |
98
+ | 0.2682 | 7.4198 | 31000 | 0.2143 | 0.2465 |
99
+ | 0.2635 | 7.6592 | 32000 | 0.2091 | 0.2420 |
100
+ | 0.2669 | 7.8985 | 33000 | 0.1994 | 0.2363 |
101
+ | 0.2627 | 8.1379 | 34000 | 0.1990 | 0.2310 |
102
+ | 0.2889 | 8.3772 | 35000 | 0.1949 | 0.2259 |
103
+ | 0.2421 | 8.6166 | 36000 | 0.1903 | 0.2193 |
104
+ | 0.2283 | 8.8559 | 37000 | 0.1905 | 0.2189 |
105
+ | 0.2355 | 9.0953 | 38000 | 0.1885 | 0.2152 |
106
+ | 0.2457 | 9.3346 | 39000 | 0.1833 | 0.2125 |
107
+ | 0.2361 | 9.5740 | 40000 | 0.1794 | 0.2080 |
108
+ | 0.3127 | 9.8133 | 41000 | 0.1806 | 0.2067 |
109
+ | 0.2132 | 10.0527 | 42000 | 0.1806 | 0.2033 |
110
+ | 0.21 | 10.2920 | 43000 | 0.1759 | 0.1990 |
111
+ | 0.2118 | 10.5314 | 44000 | 0.1798 | 0.2004 |
112
+ | 0.1992 | 10.7707 | 45000 | 0.1711 | 0.1974 |
113
+ | 0.2101 | 11.0101 | 46000 | 0.1689 | 0.1949 |
114
+ | 0.2097 | 11.2494 | 47000 | 0.1710 | 0.1929 |
115
+ | 0.2029 | 11.4888 | 48000 | 0.1671 | 0.1901 |
116
+ | 0.247 | 11.7281 | 49000 | 0.1674 | 0.1885 |
117
+ | 0.1932 | 11.9674 | 50000 | 0.1685 | 0.1891 |
118
+ | 0.1813 | 12.2068 | 51000 | 0.1652 | 0.1840 |
119
+ | 0.1932 | 12.4461 | 52000 | 0.1636 | 0.1831 |
120
+ | 0.1801 | 12.6855 | 53000 | 0.1629 | 0.1818 |
121
+ | 0.1758 | 12.9248 | 54000 | 0.1634 | 0.1799 |
122
+ | 0.1865 | 13.1642 | 55000 | 0.1630 | 0.1785 |
123
+ | 0.1829 | 13.4035 | 56000 | 0.1619 | 0.1780 |
124
+ | 0.1831 | 13.6429 | 57000 | 0.1621 | 0.1777 |
125
+ | 0.1786 | 13.8822 | 58000 | 0.1590 | 0.1753 |
126
+ | 0.177 | 14.1216 | 59000 | 0.1597 | 0.1746 |
127
+ | 0.1722 | 14.3609 | 60000 | 0.1563 | 0.1723 |
128
+ | 0.1621 | 14.6003 | 61000 | 0.1629 | 0.1715 |
129
+ | 0.1672 | 14.8396 | 62000 | 0.1567 | 0.1714 |
130
+ | 0.1593 | 15.0790 | 63000 | 0.1556 | 0.1677 |
131
+ | 0.1733 | 15.3183 | 64000 | 0.1542 | 0.1684 |
132
+ | 0.1621 | 15.5577 | 65000 | 0.1554 | 0.1669 |
133
+ | 0.166 | 15.7970 | 66000 | 0.1525 | 0.1664 |
134
+ | 0.1638 | 16.0364 | 67000 | 0.1545 | 0.1647 |
135
+ | 0.1587 | 16.2757 | 68000 | 0.1558 | 0.1646 |
136
+ | 0.1653 | 16.5151 | 69000 | 0.1504 | 0.1631 |
137
+ | 0.1553 | 16.7544 | 70000 | 0.1512 | 0.1637 |
138
+ | 0.1575 | 16.9938 | 71000 | 0.1502 | 0.1618 |
139
+ | 0.2144 | 17.2331 | 72000 | 0.1495 | 0.1614 |
140
+ | 0.17 | 17.4725 | 73000 | 0.1497 | 0.1612 |
141
+ | 0.1603 | 17.7118 | 74000 | 0.1541 | 0.1601 |
142
+ | 0.145 | 17.9512 | 75000 | 0.1505 | 0.1578 |
143
+ | 0.1419 | 18.1905 | 76000 | 0.1495 | 0.1573 |
144
+ | 0.1424 | 18.4299 | 77000 | 0.1516 | 0.1582 |
145
+ | 0.2559 | 18.6692 | 78000 | 0.1500 | 0.1580 |
146
+ | 0.1591 | 18.9086 | 79000 | 0.1488 | 0.1559 |
147
+ | 0.2104 | 19.1479 | 80000 | 0.1495 | 0.1567 |
148
+ | 0.1392 | 19.3873 | 81000 | 0.1483 | 0.1545 |
149
+ | 0.1476 | 19.6266 | 82000 | 0.1489 | 0.1532 |
150
+ | 0.1348 | 19.8660 | 83000 | 0.1440 | 0.1526 |
151
+ | 0.1527 | 20.1053 | 84000 | 0.1475 | 0.1530 |
152
+ | 0.1323 | 20.3447 | 85000 | 0.1453 | 0.1505 |
153
+ | 0.1431 | 20.5840 | 86000 | 0.1442 | 0.1506 |
154
+ | 0.1456 | 20.8234 | 87000 | 0.1432 | 0.1511 |
155
+ | 0.1465 | 21.0627 | 88000 | 0.1444 | 0.1499 |
156
+ | 0.1353 | 21.3021 | 89000 | 0.1499 | 0.1499 |
157
+ | 0.1468 | 21.5414 | 90000 | 0.1444 | 0.1485 |
158
+ | 0.1374 | 21.7808 | 91000 | 0.1435 | 0.1466 |
159
+ | 0.131 | 22.0201 | 92000 | 0.1462 | 0.1484 |
160
+ | 0.1411 | 22.2595 | 93000 | 0.1438 | 0.1473 |
161
+ | 0.1362 | 22.4988 | 94000 | 0.1449 | 0.1476 |
162
+ | 0.1319 | 22.7382 | 95000 | 0.1411 | 0.1466 |
163
+ | 0.1304 | 22.9775 | 96000 | 0.1409 | 0.1452 |
164
+ | 0.1376 | 23.2169 | 97000 | 0.1440 | 0.1464 |
165
+ | 0.1426 | 23.4562 | 98000 | 0.1424 | 0.1458 |
166
+ | 0.1259 | 23.6955 | 99000 | 0.1439 | 0.1469 |
167
+ | 0.1338 | 23.9349 | 100000 | 0.1425 | 0.1437 |
168
+ | 0.1179 | 24.1742 | 101000 | 0.1429 | 0.1446 |
169
+ | 0.2212 | 24.4136 | 102000 | 0.1408 | 0.1439 |
170
+ | 0.1248 | 24.6529 | 103000 | 0.1422 | 0.1439 |
171
+ | 0.1203 | 24.8923 | 104000 | 0.1429 | 0.1436 |
172
+ | 0.1222 | 25.1316 | 105000 | 0.1434 | 0.1422 |
173
+ | 0.1638 | 25.3710 | 106000 | 0.1419 | 0.1419 |
174
+ | 0.2444 | 25.6103 | 107000 | 0.1386 | 0.1424 |
175
+ | 0.1222 | 25.8497 | 108000 | 0.1420 | 0.1406 |
176
+ | 0.1582 | 26.0890 | 109000 | 0.1401 | 0.1404 |
177
+ | 0.1175 | 26.3284 | 110000 | 0.1444 | 0.1412 |
178
+ | 0.1263 | 26.5677 | 111000 | 0.1415 | 0.1415 |
179
+ | 0.125 | 26.8071 | 112000 | 0.1376 | 0.1395 |
180
+ | 0.1209 | 27.0464 | 113000 | 0.1403 | 0.1401 |
181
+ | 0.1244 | 27.2858 | 114000 | 0.1417 | 0.1402 |
182
+ | 0.1184 | 27.5251 | 115000 | 0.1409 | 0.1390 |
183
+ | 0.1138 | 27.7645 | 116000 | 0.1411 | 0.1374 |
184
+ | 0.1157 | 28.0038 | 117000 | 0.1387 | 0.1381 |
185
+ | 0.1175 | 28.2432 | 118000 | 0.1422 | 0.1393 |
186
+ | 0.1151 | 28.4825 | 119000 | 0.1437 | 0.1380 |
187
+ | 0.113 | 28.7219 | 120000 | 0.1418 | 0.1373 |
188
+ | 0.1209 | 28.9612 | 121000 | 0.1418 | 0.1368 |
189
+ | 0.1237 | 29.2006 | 122000 | 0.1376 | 0.1353 |
190
+ | 0.1119 | 29.4399 | 123000 | 0.1409 | 0.1368 |
191
+ | 0.1064 | 29.6793 | 124000 | 0.1415 | 0.1364 |
192
+ | 0.2035 | 29.9186 | 125000 | 0.1384 | 0.1348 |
193
+ | 0.117 | 30.1580 | 126000 | 0.1403 | 0.1355 |
194
+ | 0.1155 | 30.3973 | 127000 | 0.1430 | 0.1358 |
195
+ | 0.1126 | 30.6367 | 128000 | 0.1392 | 0.1348 |
196
+ | 0.1305 | 30.8760 | 129000 | 0.1378 | 0.1350 |
197
+ | 0.1057 | 31.1154 | 130000 | 0.1425 | 0.1340 |
198
+ | 0.1074 | 31.3547 | 131000 | 0.1419 | 0.1348 |
199
+ | 0.1097 | 31.5941 | 132000 | 0.1400 | 0.1340 |
200
+ | 0.1128 | 31.8334 | 133000 | 0.1401 | 0.1337 |
201
+ | 0.1124 | 32.0728 | 134000 | 0.1384 | 0.1336 |
202
+ | 0.142 | 32.3121 | 135000 | 0.1409 | 0.1346 |
203
+ | 0.1088 | 32.5515 | 136000 | 0.1402 | 0.1321 |
204
+ | 0.109 | 32.7908 | 137000 | 0.1415 | 0.1330 |
205
+ | 0.0999 | 33.0302 | 138000 | 0.1408 | 0.1325 |
206
+ | 0.1042 | 33.2695 | 139000 | 0.1391 | 0.1334 |
207
+ | 0.1411 | 33.5089 | 140000 | 0.1402 | 0.1324 |
208
+ | 0.1086 | 33.7482 | 141000 | 0.1383 | 0.1315 |
209
+ | 0.1026 | 33.9876 | 142000 | 0.1401 | 0.1322 |
210
+ | 0.1035 | 34.2269 | 143000 | 0.1431 | 0.1312 |
211
+ | 0.1049 | 34.4663 | 144000 | 0.1409 | 0.1306 |
212
+ | 0.111 | 34.7056 | 145000 | 0.1406 | 0.1312 |
213
+ | 0.1161 | 34.9449 | 146000 | 0.1417 | 0.1305 |
214
+ | 0.1001 | 35.1843 | 147000 | 0.1392 | 0.1306 |
215
+ | 0.1019 | 35.4236 | 148000 | 0.1380 | 0.1302 |
216
+ | 0.1046 | 35.6630 | 149000 | 0.1389 | 0.1306 |
217
+ | 0.1057 | 35.9023 | 150000 | 0.1386 | 0.1295 |
218
+ | 0.0911 | 36.1417 | 151000 | 0.1403 | 0.1294 |
219
+ | 0.1028 | 36.3810 | 152000 | 0.1407 | 0.1292 |
220
+ | 0.1118 | 36.6204 | 153000 | 0.1410 | 0.1297 |
221
+ | 0.1144 | 36.8597 | 154000 | 0.1367 | 0.1286 |
222
+ | 0.1347 | 37.0991 | 155000 | 0.1386 | 0.1290 |
223
+ | 0.1073 | 37.3384 | 156000 | 0.1385 | 0.1281 |
224
+ | 0.1032 | 37.5778 | 157000 | 0.1405 | 0.1286 |
225
+ | 0.0986 | 37.8171 | 158000 | 0.1376 | 0.1279 |
226
+ | 0.1225 | 38.0565 | 159000 | 0.1395 | 0.1282 |
227
+ | 0.0986 | 38.2958 | 160000 | 0.1399 | 0.1288 |
228
+ | 0.1008 | 38.5352 | 161000 | 0.1380 | 0.1281 |
229
+ | 0.1073 | 38.7745 | 162000 | 0.1369 | 0.1276 |
230
+ | 0.0999 | 39.0139 | 163000 | 0.1395 | 0.1271 |
231
+ | 0.1044 | 39.2532 | 164000 | 0.1375 | 0.1267 |
232
+ | 0.1038 | 39.4926 | 165000 | 0.1377 | 0.1267 |
233
+ | 0.1019 | 39.7319 | 166000 | 0.1413 | 0.1271 |
234
+ | 0.0986 | 39.9713 | 167000 | 0.1402 | 0.1267 |
235
+ | 0.1269 | 40.2106 | 168000 | 0.1395 | 0.1260 |
236
+ | 0.1122 | 40.4500 | 169000 | 0.1404 | 0.1267 |
237
+ | 0.1014 | 40.6893 | 170000 | 0.1392 | 0.1265 |
238
+ | 0.1032 | 40.9287 | 171000 | 0.1404 | 0.1264 |
239
+ | 0.1002 | 41.1680 | 172000 | 0.1380 | 0.1257 |
240
+ | 0.1063 | 41.4074 | 173000 | 0.1390 | 0.1256 |
241
+ | 0.0974 | 41.6467 | 174000 | 0.1396 | 0.1257 |
242
+ | 0.132 | 41.8861 | 175000 | 0.1360 | 0.1252 |
243
+ | 0.0956 | 42.1254 | 176000 | 0.1365 | 0.1250 |
244
+ | 0.1059 | 42.3648 | 177000 | 0.1379 | 0.1257 |
245
+ | 0.0932 | 42.6041 | 178000 | 0.1396 | 0.1258 |
246
+ | 0.0984 | 42.8435 | 179000 | 0.1368 | 0.1250 |
247
+ | 0.0922 | 43.0828 | 180000 | 0.1403 | 0.1255 |
248
+ | 0.0894 | 43.3222 | 181000 | 0.1384 | 0.1247 |
249
+ | 0.0969 | 43.5615 | 182000 | 0.1394 | 0.1262 |
250
+ | 0.1031 | 43.8009 | 183000 | 0.1342 | 0.1252 |
251
+ | 0.1028 | 44.0402 | 184000 | 0.1382 | 0.1252 |
252
+ | 0.1079 | 44.2796 | 185000 | 0.1375 | 0.1257 |
253
+ | 0.097 | 44.5189 | 186000 | 0.1389 | 0.1248 |
254
+ | 0.0914 | 44.7583 | 187000 | 0.1380 | 0.1254 |
255
+ | 0.0984 | 44.9976 | 188000 | 0.1366 | 0.1242 |
256
+ | 0.0886 | 45.2370 | 189000 | 0.1369 | 0.1246 |
257
+ | 0.0926 | 45.4763 | 190000 | 0.1369 | 0.1234 |
258
+ | 0.0966 | 45.7157 | 191000 | 0.1384 | 0.1235 |
259
+ | 0.0931 | 45.9550 | 192000 | 0.1351 | 0.1236 |
260
+ | 0.1066 | 46.1944 | 193000 | 0.1363 | 0.1235 |
261
+ | 0.095 | 46.4337 | 194000 | 0.1350 | 0.1231 |
262
+ | 0.0961 | 46.6730 | 195000 | 0.1361 | 0.1239 |
263
+ | 0.1052 | 46.9124 | 196000 | 0.1356 | 0.1227 |
264
+ | 0.0976 | 47.1517 | 197000 | 0.1374 | 0.1240 |
265
+ | 0.0962 | 47.3911 | 198000 | 0.1361 | 0.1232 |
266
+ | 0.1067 | 47.6304 | 199000 | 0.1359 | 0.1229 |
267
+ | 0.0943 | 47.8698 | 200000 | 0.1331 | 0.1223 |
268
+ | 0.0905 | 48.1091 | 201000 | 0.1365 | 0.1234 |
269
+ | 0.1319 | 48.3485 | 202000 | 0.1371 | 0.1238 |
270
+ | 0.1026 | 48.5878 | 203000 | 0.1377 | 0.1237 |
271
+ | 0.098 | 48.8272 | 204000 | 0.1391 | 0.1230 |
272
+ | 0.0982 | 49.0665 | 205000 | 0.1375 | 0.1226 |
273
+ | 0.0957 | 49.3059 | 206000 | 0.1380 | 0.1232 |
274
+ | 0.0945 | 49.5452 | 207000 | 0.1373 | 0.1226 |
275
+ | 0.0952 | 49.7846 | 208000 | 0.1365 | 0.1223 |
276
+ | 0.1038 | 50.0239 | 209000 | 0.1367 | 0.1226 |
277
+ | 0.0921 | 50.2633 | 210000 | 0.1357 | 0.1216 |
278
+ | 0.0892 | 50.5026 | 211000 | 0.1356 | 0.1222 |
279
+ | 0.0892 | 50.7420 | 212000 | 0.1374 | 0.1223 |
280
+ | 0.2185 | 50.9813 | 213000 | 0.1371 | 0.1226 |
281
+ | 0.0938 | 51.2207 | 214000 | 0.1385 | 0.1223 |
282
+ | 0.0925 | 51.4600 | 215000 | 0.1375 | 0.1226 |
283
+ | 0.0939 | 51.6994 | 216000 | 0.1369 | 0.1221 |
284
+ | 0.0956 | 51.9387 | 217000 | 0.1370 | 0.1220 |
285
+ | 0.0916 | 52.1781 | 218000 | 0.1377 | 0.1217 |
286
+ | 0.0954 | 52.4174 | 219000 | 0.1377 | 0.1222 |
287
+ | 0.0926 | 52.6568 | 220000 | 0.1379 | 0.1217 |
288
+ | 0.0887 | 52.8961 | 221000 | 0.1374 | 0.1213 |
289
+ | 0.0928 | 53.1355 | 222000 | 0.1374 | 0.1215 |
290
+ | 0.0809 | 53.3748 | 223000 | 0.1376 | 0.1213 |
291
+ | 0.0957 | 53.6142 | 224000 | 0.1376 | 0.1205 |
292
+ | 0.0829 | 53.8535 | 225000 | 0.1376 | 0.1211 |
293
+ | 0.0885 | 54.0929 | 226000 | 0.1375 | 0.1210 |
294
+ | 0.0962 | 54.3322 | 227000 | 0.1377 | 0.1206 |
295
+ | 0.092 | 54.5716 | 228000 | 0.1362 | 0.1204 |
296
+ | 0.0829 | 54.8109 | 229000 | 0.1382 | 0.1209 |
297
+ | 0.0891 | 55.0503 | 230000 | 0.1379 | 0.1213 |
298
+ | 0.0868 | 55.2896 | 231000 | 0.1383 | 0.1215 |
299
+ | 0.0825 | 55.5290 | 232000 | 0.1374 | 0.1207 |
300
+ | 0.085 | 55.7683 | 233000 | 0.1385 | 0.1213 |
301
+ | 0.1107 | 56.0077 | 234000 | 0.1372 | 0.1206 |
302
+ | 0.0848 | 56.2470 | 235000 | 0.1382 | 0.1208 |
303
+ | 0.0842 | 56.4864 | 236000 | 0.1372 | 0.1204 |
304
+ | 0.1249 | 56.7257 | 237000 | 0.1364 | 0.1208 |
305
+ | 0.0873 | 56.9651 | 238000 | 0.1375 | 0.1204 |
306
+ | 0.0854 | 57.2044 | 239000 | 0.1377 | 0.1203 |
307
+ | 0.0892 | 57.4438 | 240000 | 0.1373 | 0.1201 |
308
+ | 0.0841 | 57.6831 | 241000 | 0.1375 | 0.1204 |
309
+ | 0.093 | 57.9225 | 242000 | 0.1375 | 0.1204 |
310
+ | 0.0875 | 58.1618 | 243000 | 0.1368 | 0.1199 |
311
+ | 0.0909 | 58.4011 | 244000 | 0.1374 | 0.1202 |
312
+ | 0.0918 | 58.6405 | 245000 | 0.1375 | 0.1205 |
313
+ | 0.0992 | 58.8798 | 246000 | 0.1369 | 0.1202 |
314
+ | 0.0875 | 59.1192 | 247000 | 0.1372 | 0.1202 |
315
+ | 0.0915 | 59.3585 | 248000 | 0.1376 | 0.1202 |
316
+ | 0.088 | 59.5979 | 249000 | 0.1372 | 0.1202 |
317
+ | 0.16 | 59.8372 | 250000 | 0.1375 | 0.1202 |
318
+
319
+
320
+ ### Framework versions
321
+
322
+ - Transformers 4.42.3
323
+ - Pytorch 2.3.1+cu121
324
+ - Datasets 2.20.0
325
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "utter-project/mHuBERT-147",
3
+ "activation_dropout": 0.1,
4
+ "apply_spec_augment": true,
5
+ "architectures": [
6
+ "HubertForCTC"
7
+ ],
8
+ "attention_dropout": 0.1,
9
+ "bos_token_id": 1,
10
+ "classifier_proj_size": 256,
11
+ "conv_bias": false,
12
+ "conv_dim": [
13
+ 512,
14
+ 512,
15
+ 512,
16
+ 512,
17
+ 512,
18
+ 512,
19
+ 512
20
+ ],
21
+ "conv_kernel": [
22
+ 10,
23
+ 3,
24
+ 3,
25
+ 3,
26
+ 3,
27
+ 2,
28
+ 2
29
+ ],
30
+ "conv_stride": [
31
+ 5,
32
+ 2,
33
+ 2,
34
+ 2,
35
+ 2,
36
+ 2,
37
+ 2
38
+ ],
39
+ "ctc_loss_reduction": "mean",
40
+ "ctc_zero_infinity": false,
41
+ "do_stable_layer_norm": false,
42
+ "eos_token_id": 2,
43
+ "feat_extract_activation": "gelu",
44
+ "feat_extract_dropout": 0.0,
45
+ "feat_extract_norm": "group",
46
+ "feat_proj_dropout": 0.1,
47
+ "feat_proj_layer_norm": true,
48
+ "final_dropout": 0.3,
49
+ "gradient_checkpointing": false,
50
+ "hidden_act": "gelu",
51
+ "hidden_dropout": 0.1,
52
+ "hidden_dropout_prob": 0.1,
53
+ "hidden_size": 768,
54
+ "initializer_range": 0.02,
55
+ "intermediate_size": 3072,
56
+ "layer_norm_eps": 1e-05,
57
+ "layerdrop": 0.1,
58
+ "mask_feature_length": 10,
59
+ "mask_feature_min_masks": 0,
60
+ "mask_feature_prob": 0.0,
61
+ "mask_time_length": 10,
62
+ "mask_time_min_masks": 2,
63
+ "mask_time_prob": 0.05,
64
+ "model_type": "hubert",
65
+ "num_attention_heads": 12,
66
+ "num_conv_pos_embedding_groups": 16,
67
+ "num_conv_pos_embeddings": 128,
68
+ "num_feat_extract_layers": 7,
69
+ "num_hidden_layers": 12,
70
+ "pad_token_id": 38,
71
+ "tokenizer_class": "Wav2Vec2CTCTokenizer",
72
+ "torch_dtype": "float32",
73
+ "transformers_version": "4.42.3",
74
+ "use_weighted_layer_sum": false,
75
+ "vocab_size": 41
76
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00efde89c29889c5cad5beb6f4c87a701f553721e7fd8c2121d9acd7968404c9
3
+ size 377638396
preprocessor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "return_attention_mask": false,
8
+ "sampling_rate": 16000
9
+ }
runs/Jul10_18-46-09_sciencebrick/events.out.tfevents.1720637180.sciencebrick.3579461.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0e991cb2f9184c6d82ef6d25ff8187efa2265b35184f6261986abfb7c3d2abb
3
+ size 6246
runs/Jul10_19-00-01_sciencebrick/events.out.tfevents.1720638005.sciencebrick.3579461.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8340fe3109b52ba920f104d9525d68d90332bd89e3a6b6c0fad98fc4e0de253b
3
+ size 625128
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:039516366d327665701f95aae14d78f38deb974a1dcebfd0098411cc14ec9a39
3
+ size 5112