Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pickle
|
4 |
+
import streamlit.components.v1 as components
|
5 |
+
from sklearn.preprocessing import LabelEncoder
|
6 |
+
le = LabelEncoder()
|
7 |
+
|
8 |
+
# Load the pickled model
|
9 |
+
def load_model():
|
10 |
+
return pickle.load(open('Diamond_Price_Prediction_LinearRegression.pkl', 'rb'))
|
11 |
+
|
12 |
+
# Function for model prediction
|
13 |
+
def model_prediction(model, features):
|
14 |
+
predicted = str(model.predict(features)[0])
|
15 |
+
return predicted
|
16 |
+
|
17 |
+
def transform(text):
|
18 |
+
text = le.fit_transform(text)
|
19 |
+
return text[0]
|
20 |
+
|
21 |
+
def app_design():
|
22 |
+
# Add input fields for High, Open, and Low values
|
23 |
+
image = ''
|
24 |
+
st.image(image, use_column_width=True)
|
25 |
+
|
26 |
+
st.subheader("Enter the following values:")
|
27 |
+
|
28 |
+
Carat = st.number_input("Carat(Weight of Daimond)")
|
29 |
+
Cut = st.text_input("Cut(Quality) ('Ideal','Premium','Good','Very Good','Fair')")
|
30 |
+
Cut = transform([Cut])
|
31 |
+
Color = st.text_input("Color ('E','I','J','H','F','G','D')")
|
32 |
+
Color=transform([Color])
|
33 |
+
Clarity = st.text_input("Clarity ('SI2','SI1','VS1','VS2','VVS2','VVS1','I1','IF')")
|
34 |
+
Clarity=transform([Clarity])
|
35 |
+
Depth = st.number_input("Depth")
|
36 |
+
Table = st.number_input("Table")
|
37 |
+
X_length = st.number_input("X length")
|
38 |
+
Y_width = st.number_input("Y width")
|
39 |
+
Z_depth = st.number_input("Z depth")
|
40 |
+
|
41 |
+
# Create a feature list from the user inputs
|
42 |
+
features = [[Carat,Cut,Color,Clarity,Depth,Table,X_length,Y_width,Z_depth]]
|
43 |
+
|
44 |
+
# Load the model
|
45 |
+
model = load_model()
|
46 |
+
|
47 |
+
# Make a prediction when the user clicks the "Predict" button
|
48 |
+
if st.button('Predict Price'):
|
49 |
+
predicted_value = model_prediction(model, features)
|
50 |
+
st.success(f"The Price is: {predicted_value}")
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
def main():
|
55 |
+
|
56 |
+
# Set the app title and add your website name and logo
|
57 |
+
st.set_page_config(
|
58 |
+
page_title="Diamond Price Prediction",
|
59 |
+
page_icon=":chart_with_upwards_trend:",
|
60 |
+
)
|
61 |
+
|
62 |
+
st.title("Welcome to our Diamond Price Prediction App!")
|
63 |
+
|
64 |
+
|
65 |
+
if __name__ == '__main__':
|
66 |
+
main()
|